
nf.io: A File System Abstraction for NFV
Orchestration

Md. Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, and Raouf Boutaba
David R. Cheriton School of Computer Science, University of Waterloo

[mfbari | sr2chowdhury | r5ahmed | rboutaba]@uwaterloo.ca

Abstract—In recent years, Network Function Virtualization
(NFV) has gained a lot of traction from both industry and
academia. NFV promotes vendor-independence and rapid evo-
lution through open source software, open standards, and open
APIs. However, adopting these principles for virtual middleboxes
or Virtual Network Functions (VNFs) is not enough. The VNF
orchestration systems also need to adopt the same principles,
otherwise a network operator may still face vendor lock-in.
Moreover, standardization efforts take a long time to converge
and are often futile. For this reason, we introduce nf.io that
uses the existing well-known Linux file system interface for VNF
orchestration. Different members of a DevOps team can readily
utilize this tool without a cumbersome learning process. We have
developed a prototype, and provided a set of example use-cases
to demonstrate its effectiveness.

I. INTRODUCTION

Middleboxes have become an integral part of modern
enterprise and data center networks [1]–[3]. They are used
for realizing various performance and security objectives [4].
Most middlboxes (e.g., firewalls, Intrusion Detection Systems
(IDSs), Network Address Translators (NATs), etc.) are dedi-
cated hardware appliances. However, recent advances in cloud
and virtualization technologies have fueled the concept of
Virtual Middleboxes or Virtual Network Functions (VNFs)
along with a new research field known as Network Function
Virtualization (NFV) [5]. This area of research has gained a lot
of traction from both industry and academia. The core concept
of NFV is to move packet processing tasks from vertically
integrated hardware middleboxes to software processes run-
ning on commodity (e.g., x86 systems) servers. This shift has
been motivated by vendor lock-in, inflexible service chaining,
and prolonged time-to-market for new services caused by
the closed and proprietary nature of hardware middleboxes.
NFV on the other hand, promises to solve these problems by
promoting open source, open API, and standardized software
solutions that can run on commodity servers [6].

Although much progress has been made in NFV technol-
ogy [7]–[9], a crucial component for realizing the primary
objective of NFV is still missing – a management and orches-
tration platform that offers open and standard APIs for config-
uring, chaining, and monitoring VNF instances. Without this
feature, network operators may end-up with the same situation
of vendor lock-in as with proprietary hardware middleboxes.
A possible choice for VNF management is OpenStack [10].
However, it is more focused towards managing compute
resources. In case of VNFs, we need fine grained control

over both compute and network resources along with the APIs
for orchestrating and monitoring service chains as well as
individual VNFs. In recent years, there have been a number of
proposals like Stratos [11], OpenNF [12], Split/Merge [13] for
VNF management to fulfill these requirements. However, they
propose incompatible northbound APIs. What is really needed
is a standardized API, flexible enough to express a wide
range of NFV management and orchestration operations [14].
Standardization efforts usually take a longtime and are often
futile. Hence, we take a different approach, and propose to
use an existing, well known, standardized interface for NFV
management and orchestration: the Linux file system.

We call our proposed system nf.io. It utilizes the Linux
file system as the northbound API for VNF orchestration.
It adopts various operating system principles: (i) everything
(resource, configuration) is represented as a file, (ii) well
known utility programs (e.g., mkdir, cp, mv, ln, etc.) are
used for state manipulation, (iii) heterogeneous resource pools
(e.g., different networking tool-chains like Linux bridge [15]
or Open vSwitch [16]) are controlled through a high-level
abstraction, and (iv) resource specific drivers are developed
similar to device drivers in an OS. Existing NFV management
systems like Stratos or OpenNF can use the nf.io abstraction
by developing their own resource drivers. Moreover, nf.io
can be immediately utilized by different DevOps members
without having to learn new languages and libraries.

Our key contributions in this paper are as follows: we
(i) propose to use the Linux file system interface as a
northbound API for NFV management and orchestration, (ii)
define the file and directory structure semantics for performing
different operations like VNF deployment, chain composition,
configuration, and monitoring, and (iii) develop a proof-of-
concept prototype that can deploy fully functional service
chains composed of five different types of VNFs: Firewall,
Load Balancer, Web Proxy, IDS, and NAT. However, nf.io
is not restricted to these VNF types in anyway. Our prototype
can be easily extended to support other VNF types.

The rest of the paper is organized as follows. Rationale
behind choosing a file system based northbound API in Sec-
tion II. The file system abstraction and its semantics are
presented in Section III. The proposed system architecture is
explained in Section IV. Section V presents an evaluation of
the prototype through different use-cases. A brief discussion
of related work is provided in Section VI. Finally, we conclude
in Section VII with some future research directions.

II. DESIGN RATIONALE

Our design goal is to provide network administrators with a
central point of management, hiding the underlying distributed
nature of the deployment. Instead of reinventing the wheel to
achieve this goal, we tried to find an existing wheel that can
fit the task. We found the Linux file system interface to be a
perfect fit. The rationale behind choosing the Linux file system
interface as the API is as follows:

• Centralized view: The Linux file system interface gives
the user a centralized view of the underlying file system
through a well defined semantics of system calls. It hides
the possible distributed nature and heterogeneity of file
system technologies from the user. This will allow a user
to perform operations on the file system without worrying
about under-the-hood details. An NFV orchestration sys-
tem consists in configuring and managing a wide range
of heterogeneous resources. Exposing a file system like
interface to NFV orchestration will allow the users to
perform different management tasks without worrying
about the exact implementation details of how things are
deployed. For example, a user can easily deploy a service
chain without knowing the complex details of routing and
connectivity in the underlying network fabric.

• Centralized vs. distributed management: Using the
Linux file system as a medium for management provides
the opportunity to separate the configuration storage from
the management agents. These agents simply take the
role of separate processes accessing and modifying a
file system. The file system itself can be deployed in
a distributed manner as well. A network operator may
choose to deploy one or multiple management agents
based on requirements like fault-tolerance or scalability.

• Rich Set of File system features: There are innumerable
file system architectures with various features [17]–[19].
A file system can be centralized or distributed, provide
features like fault-tolerance, scalability, low-latency ac-
cess, etc. There is no need to re-implement these features.

• Rapid application development: A well defined man-
agement API is necessary for developing higher level
management applications that can perform a wide range
of management tasks. Having a familiar API like the file
system will make the task of application development
easier, and would allow developers to leverage the file
system utilities and libraries from the current ecosystem.

• The hierarchical NFV elements: The NFV elements
have a natural hierarchy that can be represented as a
tree-like directory structure, e.g., a service chain can be
represented as a collection of network function instances,
a network function instance can in-turn be represented
as a collection of configurations, logs, and some VM or
container running the corresponding software.

• Leverage rich set of existing applications: There are
a number of popular configuration management tools
(e.g., Chef, Puppet, etc.) that support a wide range of
file system management tasks. Exporting a file system

interface to NFV management and orchestration will
allow us to leverage these tools, and take advantage of
the already developed routines. In addition, a properly
redefined semantics of file system interface for NFV
orchestration will allow us to leverage the file system
manipulation commands available on Linux systems to
perform different management tasks.

III. FILE SYSTEM ABSTRACTION

nf.io uses a simple and intuitive directory hierarchy to
store states regarding VNF deployment, configuration, and
chaining. A high-level view of the nf.io directory hierarchy
is shown in Figure 1.

Fig. 1. A High-level View of nf.io Directory Structure

The nfio directory is the root of the nf.io file system.
Under this directory there is one subdirectory for each user
(e.g., user-a and user-b directories in Figure 1), which
marks the mount-point of that user’s home directory. Here,
‘user’ is any party that uses nf.io to deploy VNF(s). A user
is restricted within his home directory in nf.io. In other
words, a user cannot browse or access the nf.io directory
structure outside his home directory. This can be ensured by
using utility programs like Limited Shell (lshell) [20]. A user’s
home directory contains the state information for all VNF
instances and VNF chains deployed by that user. These states
are organized into directories and files mounted inside the
corresponding user’s home directory. Each user’s home di-
rectory contains two subdirectories: (i) nf-types – contains
information about different VNF types along with deployed
instances and (ii) chns – contains information regarding the
VNF chains deployed by the user. The nf-types directory
contains one directory for each VNF type (e.g., fw, lb, and
wp in Figure 1). These directories contain one subdirectory
for each VNF instance deployed by the user.

FW LB

WP1

WP2 Strand 1: FW -> LB -> WP1

Strand 2: FW -> LB -> WP2

Fig. 2. A Multi-Strand Chain

Let us assume that user-a has deployed the VNF chain
as shown in Figure 2. The chain has four VNF instances: one
firewall, one load-balancer, and two web-proxies. Traffic first
goes through the firewall fw, then the load balancer lb, and
finally through one of the web-proxies (wp1 or wp2). Figure 3
shows the directory hierarchy for the nf-types directory.

Fig. 3. The nf-types Directory

(a) Firewall (b) Web-proxy

Fig. 4. Two Sample VNF Instances

There is one sub-directory for each VNF type: fw, lb, and wp.
The directories representing the deployed VNF instances (e.g.,
fw1, lb1, wp1, and wp2) reside under the corresponding
VNF type directories. Next we will explain the directory and
file organization for individual VNF instances.

Figure 4 shows the directory and file organization for a
firewall and web-proxy. Due to space limitations we have
refrained from showing the directory and file organization of
a load-balancer. As we can see from Figure 4(a), the directory
fw1 contains a number of sub-directories: (i) config –
contains a file named boot.config that specifies the param-
eters required during VNF boot up, (ii) machine – contains
files representing host and VM information, (iii) rfs – this is a
special directory that marks the mount point for the file system
of the VNF instance itself, (iv) rules – represents the match
→ action rules for the firewall, and (v) stats – contains files
that represent different counters and statistics. The stats
directory contains files like pkt_drops, rx_bytes and
tx_bytes. As the name suggests the user can read the num-
ber of dropped packets, received and transmitted bytes from
these files, respectively. These files are actually placeholders.
When a user issues a read command the data is collected from
the VNF instance using various drivers, and returned to the
user. For example, nf.io fetches the packet drop counter
of the VM running a VNF instance when the corresponding
pkt_drops file is read. Aggregate statistics such as total
number of packet drops along a chain can also be represented
using such file based abstraction. In the later case, nf.io will
collect and aggregate the required information from different

VNF instances and will return the data as text records to the
caller. Such file system abstraction enables users to use utilities
such as grep, awk, sed, etc. along with I/O redirection
(pipes) to collect and process information from VNF instances.

The user provides the firewall rules using the rules
directory. Each rule is represented by a separate subdirectory
under the rules directory. Each rule directory contains two
subdirectories: match and action. The match directory
contains one file for each packet header field that should be
checked. So, if the user wants to match the source IP address to
10.10.0.5, then this value should be written in a file named
src_ip under the match directory. The action directory
must contain one file. It can be a file named either allow or
drop. If it contains a file named allow then the matched
packets are allowed to go up the network stack, otherwise
they are dropped. The rule directory also contains two files:
matched_bytes and matched_pkts. These files can be
read to collect the number of bytes and packets that matched
this rule, respectively. This is a very simple abstraction that we
are currently using for our proof-of-concept prototype. We are
working towards a better abstraction that can easily represent
different types of complicated firewall rules.

The directory and file organization of a web-proxy is
quite similar to that of a firewall (Figure 4(b)). However,
web-proxy does not contain a rules directory. Instead, the
configuration file for the web-proxy can be found under the
config directory – the nginx.conf file in Figure 4(b).
A user can modify this file to change the configuration of
the proxy. The web-proxy also has a directory called logs.
This directory contains two files: access and error. The
access file provides information about the successful web
requests served by the web-proxy. The error file contains
information regarding errors encountered by the web-proxy.

A VNF instance directory (e.g., fw1, wp1) also contains
two files: (i) status – indicates the current status of the VNF
(e.g., initialized, running, paused, etc.) and (ii)
action – a placeholder file that triggers VNF manipulation
operations. For example, to deploy and activate a VNF instance
the user needs to write “activate” in this file. The other
supported operations include: pause and destroy.

The structure of the chns directory is shown in Fig-
ure 5. It contains a directory for each VNF chain (e.g.,
chain-alpha, chain-beta, etc.). Keeping a separate
directory hierarchy for the VNF chains enables us to share a
VNF instance between multiple chains. Each chain directory
contains two files: status and action. The status file
indicates the current status of the VNF chain, and the action
file can be used to trigger operations like activate, pause,
and destroy on the entire chain. A VNF chain can contain
multiple traffic flow paths that we call strands. A chain
directory contains one subdirectory for each strand. In Figure 5
we have two strands: strand-1 and strand-2. The strands
directories contain additional directories, files, and symbolic
links to specify the VNF instances that comprise the chain.
This directory semantics enable users to specify their chains
in a simple manner as it resembles the way traffic is supposed

Fig. 5. Directory Hierarchy of a VNF Chain

to flow through a chain.
The strand directory contains one directory for each VNF

instance in the strand. In Figure 5, strand-1 contains
three instances: fw1, lb1, and wp1. Each of these direc-
tories contain two symbolic-links: (i) the first link has the
same name as the directory (e.g., fw1) itself and points to
the current VNF instance, (ii) the second link called next
points to the next VNF instance in the chain, e.g., under the
fw1 directory the next symbolic-link points to the direc-
tory nfio/user-a/nf-types/lb/lb1 that represents
the load-balancer placed right after the firewall in Figure 2.
The strand directory also contains a file called start that
is a symbolic-link to the first VNF in the chain. In Figure 5,
start points to the directory fw1 representing the firewall.
It is worth mentioning that, these directories only contain
symbolic-links to other directories. We have modified the
symlink file-system call to make it easy for the user to create
these directories.

Figure 5 shows the directories for both strands of the VNF
chain. The firewall and load-balancer appear in both strands.
The rationale behind this design choice is to make it easy
for the user to understand the directory hierarchy. It closely
resembles the way traffic is supposed to flow through the
chain. We have implemented a command called mkchn to
create the directory and file hierarchy for a chain. The chain
in discussion can be created with the following commands:

$ mkchn --chain-name=chain-alpha
--strand-name=strand-1 fw1 lb1 wp1

$ mkchn --chain-name=chain-alpha
--strand-name=strand-2 fw1 lb1 wp2

The mkchn command searches the user’s nf-types di-
rectory for matching VNF instances and then populates the
chain-alpha directory. The user can add multiple strands

to a chain. He can also use the same VNF instance for multiple
chains. We also implemented rmchn and rmins commands
to remove an entire chain and a single VNF instance from
a chain, respectively. rmins removes a VNF instance from
a chain by properly updating the symbolic-links. A user can
also modify a chain manually by using Linux commands like
rm, cp, ln, etc.

Typically, a user deploys a chain by writing the string
“activate” in the action file under the chain’s directory
(e.g., under chain-alpha). nf.io then traverses through
the symbolic-link structure under each strand and deploys the
required VNF instances and the network connections between
the instances. Similarly, the chain can be paused and destroyed
by writing “pause” and “destroy” in the action file.

IV. SYSTEM ARCHITECTURE

Hypervisor

Driver

Network

Driver

Chain

Driver

nf.io File System

Command

Line Utils.
Custom Scripts

Automation

Tools

Compute

Resources

Network

Resources

VNF

Chaining

Fig. 6. nf.io Architecture

A high-level view of the nf.io architecture is shown
in Figure 6. The nf.io File System is a virtual file system
that runs on top of the traditional OS file system. VNF oper-
ations are triggered when a user writes a operation string in
the action files. nf.io performs these operations by using
three resource drivers: (i) Hypervisor Driver, (ii) Network
Driver, and (iii) Chain Driver. The hypervisor and network
drivers manage the compute and network resources, respec-
tively. The chain driver manages VNF chains by configuring
traffic forwarding rules between VNFs.

A. Hypervisor Driver

In nf.io, network functions can be deployed in a number
of ways. They can run as processes on a physical ma-
chine, VMs on a hypervisor like Xen or KVM, or as light-
weigh containers provided by Docker [21] or Linux Container
(LXC) [22]. The hypervisor driver abstracts the underlying
diversity in these virtualization technologies and provides a
uniform interface to nf.io.

B. Network Driver

nf.io requires support for certain networking functionality
from the underlying physical infrastructure. Figure 7 shows a
typical network configuration required for nf.io. In each
physical machine, nf.io must have the ability to: (i) setup
bridges, (ii) create IP links between virtual ethernet (veth)
pairs, (iii) setup tunnels (e.g., VXLAN or GRE), and (iv)

install forwarding rules. The first three are usually supported
by most Linux networking stacks. Forwarding rules can be
configured in two different ways: using iptables in Linux
or using OpenFlow [23] rules in Open vSwitch (OVS) [16].
nf.io can work with both setups, as long as the OVS version
supports some tunneling technology.

br0 eth0 tep-chn

br-chn

tn0

et
h

0

et
h

1

vRS

et
h

0

et
h

1

vRS

br0 eth0 tep-chn

br-chn

tn1

et
h

0

et
h

1

vRS

et
h

0

et
h

1

vRS

br0 eth0 tep-chn

br-chn

tn2

et
h

0

et
h

1

vRS

et
h

0

et
h

1

vRS

Physical Machine Physical Machine Physical Machine

Physical Network

Tunnel

Fig. 7. Network Setup for VNF Chaining

Figure 7 shows a network configuration where each physical
machine has one NIC. The configuration with multiple NICs is
much simpler and thereby not explicitly included in the paper.
In each physical machine, nf.io needs to setup two bridges
br0 and br-chn that are used for basic network connectivity
and VNF chaining, respectively. tn0 and tep-chn are veth
pairs used to connect the two bridges. Then GRE or VXLAN
tunnels are setup between the tn* interfaces to connects
all the br-chn bridges on different physical machines –
creating a separate network for the eth1 interface of the
vRSs. vRS indicates isolated virtual compute resources (e.g.,
VMs, containers, etc.). If we have a second physical NIC than
this veth pair is not required, and the br-chn can directly
connect to the second NIC. Each vRS is connected to the
network with two interfaces. eth0 is used as the front-facing
interface (e.g., one with a public IP in a NAT/Firewall). It is
also used to provide SSH access to the vRS. eth1 is used
for setting up routing paths between VNFs for chaining. The
mechanism used for chaining VNFs with these interfaces will
be explained in detail in Section IV-C.

Similar to the hypervisor driver, the network driver hides
the underlying heterogeneity and complexity. nf.io only
needs to work with simple abstractions like network interfaces
(eth0 and eth1 in vRS) instead of bridges and tunnels.

C. Chain Driver

The chain driver interconnects different types of VNFs. It
provides a single function chn-cnct(vnf1, vnf2) to the
nf.io, where vnf1 and vnf2 are two arbitrary VNFs. For a
chain like a → b → c, this function must be called twice: first
for a → b, and again for b → c. The task of Interconnecting
two VNFs depends primarily on their types, and whether their
network interfaces are on the same network (IP subnet) or not.
Figure 8 shows four possible chaining scenarios:

In Figure 8(a), VNF a forwards traffic to VNF b. This is an
example of how a NAT or Firewall is connected. VNF a re-
ceives traffic on one interface, and after some processing (e.g.,

a b

b

b

a b
b

c

a

(a) Chain 1

a b

b

b

a b
b

c

a

(b) Chain 2

a b

b

b

a b
b

c

a

(c) Chain 3

a b

b

b

a b
b

c

a

b a

a

a

(d) Chain 4

Fig. 8. Four Chaining Scenarios

port mapping, applying security rules) forwards the packet to
its second interface. The second scenario represents VNFs that
do not actively forward traffic, like an IDS. In Figure 8(b) VNF
c just listens to the traffic forwarded by VNF a to b. In the third
scenario, a VNF forwards traffic to multiple VNFs. Figure 8(c)
shows one such example, where VNF a is forwarding traffic
to three VNFs. Here, VNF a can be a load-balancer, and b can
be web-proxies. Finally, multiple VNFs can forward traffic to
a single VNF, as shown in Figure 8(d). For example, multiple
firewalls can forward traffic to a single web-proxy. The current
implementation of the nf.io’s Chain Driver can configure all
possible connection scenarios between five different VNFs. We
do not include all of them in the paper due to space limitations.
It is worth mentioning that nf.io is not restricted to these
VNF types in anyway.

V. PROTOTYPE EVALUATION

We evaluate the effectiveness of nf.io through various use
cases (Section V-B). Before going into the details of these use
cases, we first briefly describe our prototype implementation
(Section V-A).

A. Implementation

The nf.io prototype is implemented using the python
API binding for FUSE [24]. We rewrote a number of Linux
file system calls like mkdir, read, write, symlink,
etc. to implement the nf.io file system semantics. The
Hypervisor Driver currently supports KVM, Xen and Docker.
We use libvirt [25] and Docker Remote API to control VMs
in KVM/Xen and containers in Docker, respectively. The
Network and Chain Drivers currently support two config-
urations: (i) Linux iptables with Linux bridge and (ii)
Open vSwitch (OVS). In the first configuration, the route
command is used to forward traffic from one VNF instance
to the next. iptables is used for setting up NAT rules and
also for blocking unwanted traffic. Linux bridges are used to
setup a separate network for VNF chaining. In the second
configuration, OVS itself provides all required functionalities:
(i) traffic is forwarded or blocked using OpenFlow rules, (ii)
NATing is also performed by setting up OpenFlow rules to

change the source or destination IP address and port numbers,
and (iii) OVS bridge is used to deploy a separate network
for chaining. In both cases we use GRE tunnels to connect
vRSs deployed on different physical machines. Finally, we
remotely mount a vRS’s file system under the directory rfs
(Section III) using sshfs [26]. A demonstration of nf.io
is available at http://faizulbari.github.io/nf.io/.

B. Use Cases

We demonstrate the capabilities of nf.io by showcasing
use cases focused on three primary areas: (i) deployment,
(ii) configuration and (iii) monitoring of VNF instances and
chains. In the following examples we assume that nf.io is
mounted at /nfio and all the paths are relative to this mount
point.

1) Deployment: In this section we first show how to deploy
a single VNF instance, followed by the deployment of a chain.

The following mkdir command creates the directory struc-
ture (similar to Figure 4) for a Bro IDS instance:

$ mkdir nf-types/bro/ids-a

Automation tools like Chef [27] can use nf.io for NFV
management. For example, the following Chef recipes first
creates the directory structure for a VNF instance and then
configures it to be deployed on a physical machine with IP
address 10.0.0.11:

directory "nf-types/bro/ids-a" do
owner ‘user-a’
group ‘user-a’
mode ‘0755’
action :create

end
file "nf-types/bro/ids-a/machine/ip" do

owner ‘user-a’
group ‘user-a’
mode ‘0755’
content "10.0.0.11"

end

We can create a VNF chain after creating the VNF
instances. First, we need to create a directory (chain-a)
under chns. Then we add symbolic-links to the VNF
instances that are part of chain-a. We also need to add the
start and next symbolic-links as explained in Section III.
The following example creates the chain firewall → webproxy
→ load balancer:
$ mkdir chns/chain-a
$ mkdir chns/chain-a/strand-1
$ cd chns/chain-a/strand-1
$ ln -s nf-types/fw-ufw/fw-a
$ ln -s nf-types/proxy-nginx/proxy-a
$ ln -s nf-types/balancer/lb-a
$ ln -s nf-types/fw-ufw/fw-a start
$ ln -s nf-types/proxy-nginx/proxy-a
fw-a/next
$ ln -s nf-types/balancer/lb-a

proxy-a/next
$ echo ‘activate’ > chns/chain-a/action

The echo ‘activate’ > chns/chain-a/action
command triggers the deployment of the VNF instances
included in chain-a. nf.io traverses the symbolic-link
structure to get the necessary configurations, and performs the
following operations: copy VM or container images to target
machines, boot the VNF instances, and configure the network
connectivity to create the chain.

2) Configuration: nf.io provides the facility to modify
different configuration parameters. For example, a VNF in-
stance can be migrated to a different physical machine as
follows:

$ echo ‘pause’ > chns/chain-a/action
$ echo ‘10.0.0.15’ > chns/chain-alpha/
fw-alpha/fw-a/machine/ip
$ echo ‘activate’ > chns/chain-a/action

3) Monitoring: nf.io exposes a file system interface to
collect information ranging from that of individual VNFs
to end-to-end service chains. This enables the users to use
utility programs like grep, sed, awk, etc. to collect and
process monitoring data. It also facilitates rapid development
of monitoring applications that can easily monitor a distributed
NFV deployment through simple file system operations in
nf.io. The following examples demonstrate its monitoring
capabilities:

Total number of packet drops along a chain:

$ find -L chns/chain-a pkt_drops |
xargs cat | awk ‘{total += $1}
END {print total}’

List of all VNF instances deployed on a physical machine
with IP address 10.0.0.17:

$ grep -R ‘10.0.0.17’ nf-types/

List of all chains a VNF instance is part of:

$ find chns -lname nf-types/fw-ufw/fw-a

Remotely mounting a VNF’s file system (under rfs) en-
ables us to directly collect and process their logs from nf.io.
For example, we can monitor the number of active connections
to a web server from the logs of a Bro IDS as follows:

$ tail -n +8 chns/chain-a/ids-a/ids-a/rfs/
/logs/current/conn.log | awk ‘{print $8}’ |
grep -c ‘http’}

VI. RELATED WORK

Current state-of-the-art NFV management solutions include
projects like Stratos [11] and OpenNF [12]. Stratos proposes
an architecture for orchestrating VNFs outsourced to a remote
cloud by taking care of traffic engineering, horizontal scaling
etc. On the other hand, OpenNF proposes a converged control
plane for VNFs and network forwarding plane by extending
the centralized SDN paradigm. Both of these projects propose

different northbound APIs that are specific to their individual
feature set. They are not inter-operable in any way. nf.io
proposes an open, standardized and well-known API for VNF
management and orchestration that has passed the test of
time and proven to be very expressible. Adopting the nf.io
abstraction is quite easy as everything is represented as files.

The “everything as a file” design principal of Linux virtual
file system has inspired many other systems with file system
like interfaces. Good examples of such systems are sysfs
and procfs. sysfs exports various system configuration
parameters to the userspace as a hierarchical structure of
virtual directories and files. Similarly, procfs exports various
process related parameters to the userspace through such
virtual directory structure. This kind of interfaces allow users
to easily read and tune system parameters using regular file
system operations. Recently, an SDN controller with a file
system like interface was proposed in [28]. It represents the
network topology and forwarding rules in switches with a
hierarchy of virtual directories and files.

Cloud management systems like OpenStack [10], Cloud-
Stack [29], and SaltStack [30] can be candidates for VNF man-
agement. However, they are more focused towards managing
compute resources. They do not provide adequate networking
support for VNF chaining [31]. nf.io provides a very simple
and well known interface to work with. The user do not
need to know about the underlying complex technologies
like routing, bridges, tunnels, or tunnel-end-points. He can
orchestrate a VNF service chain by populating the proper
directory hierarchy using common Linux utility programs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the design of nf.io
– a file system abstraction for managing and orchestrating
VNFs. nf.io exposes the Linux file system interface as the
northbound API, enabling users to manage and orchestrate
VNF service chains by performing simple file and directory
manipulation operations. We have shown the effectiveness
of nf.io through several use-cases that demonstrate its
flexibility, expressiveness, and user-friendliness.
nf.io is currently under active development. Our next

steps include: (i) improve the file system semantics, (ii)
provide better isolation by deploying a separate network
namespace for each user, (iii) integrate a resource scheduler
for improved automation and utilization, (iv) add support for
Cosmos [32] that simplifies deployment of ClickOS [7] based
VMs on Xen, and (v) integrate nf.io with cloud manage-
ment frameworks like OpenStack. nf.io marks our first
step towards designing a cutting-edge middleware for NFV
management and orchestration. During the initial development
of nf.io we have found the file system abstraction to be
a great fit as a northbound API for VNF management and
orchestration. We believe that, this design choice will avoid
the hassle of going through tedious standardization processes
in the long run, and will promote vendor-independence and
rapid evolution in NFV management and orchestration.

REFERENCES

[1] W. Liu, H. Li, O. Huang, M. Boucadair, N. Leymann, Q. Fu, Q. Sun,
C. Pham, C. Huang, J. Zhu, and P. He, “Service Function Chaining
Problem Statement,” draft-liu-sfc-use-cases-08 (work in progress), 2014.

[2] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro,
“Service Function Chaining Use Cases in Mobile Networks,” 2014.

[3] S. Surendra, M. Tufail, S. Majee, C. Captari, and S. Homma, “Service
Function Chaining Use Cases in Mobile Networks,” 2014.

[4] J. Sherry and S. Ratnasamy, “A Survey of Enterprise Middlebox
Deployments,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2012-24, Feb 2012.

[5] ETSI, “Network Functions Virtualisation – Introductory White Paper,”
https://portal.etsi.org/NFV/NFV White Paper.pdf, 2012.

[6] ——, “Network functions virtualisation (nfv); management and or-
chestration,” http://www.etsi.org/technologies-clusters/technologies/nfv,
2014.

[7] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualization,”
in Proceedings of NSDI ’14. USENIX Association, 2014, pp. 459–473.

[8] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commodity
platforms,” in Proceedings of NSDI ’14. USENIX Association, 2014,
pp. 445–458.

[9] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” Communications Magazine,
IEEE, vol. 51, no. 11, pp. 24–31, 2013.

[10] “OpenStack Open Source Cloud Computing Software,”
http://openstack.org/.

[11] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,
A. Anand, T. Benson, A. Akella, and V. Sekar, “Stratos: A network-
aware orchestration layer for middleboxes in the cloud,” CoRR, vol.
abs/1305.0209, 2013. [Online]. Available: http://arxiv.org/abs/1305.0209

[12] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling innovation in network
function control,” in Proc. of SIGCOMM. ACM, 2014, pp. 163–174.

[13] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes.” in Proc. of USENIX NSDI, 2013, pp. 227–240.

[14] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba,
“On orchestrating virtual network functions in NFV,” CoRR, vol.
abs/1503.06377, 2015. [Online]. Available: http://arxiv.org/abs/1503.
06377

[15] “Linux Bridge,” http://www.linuxfoundation.org/collaborate/workgroups/
networking/bridge.

[16] “OVS: Open vSwitch,” https://linuxcontainers.org/.
[17] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, “A nine year study

of file system and storage benchmarking,” ACM Transactions on Storage
(TOS), vol. 4, no. 2, p. 5, 2008.

[18] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A
survey of peer-to-peer storage techniques for distributed file systems,”
in Information Technology: Coding and Computing, 2005. ITCC 2005.
International Conference on, vol. 2. IEEE, 2005, pp. 205–213.

[19] M. Satyanarayanan, “A survey of distributed file systems,” Annual
Review of Computer Science, vol. 4, no. 1, pp. 73–104, 1990.

[20] “Limited Shell (lshell),” https://github.com/ghantoos/lshell.
[21] “Docker,” http://docker.com/.
[22] “LXC: Linux Containers,” https://linuxcontainers.org/.
[23] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[24] “fusepy,” https://github.com/terencehonles/fusepy.
[25] “libvirt: The virtualization API,” http://libvirt.org/.
[26] “sshfs,” http://fuse.sourceforge.net/sshfs.html.
[27] “Chef,” https://www.chef.io/chef/.
[28] M. Monaco, O. Michel, and E. Keller, “Applying operating system

principles to SDN controller design,” in Proc. of HotNets. ACM, 2013.
[29] “Apache CloudStack: Open Source Cloud Computing,”

http://cloudstack.apache.org/.
[30] “SaltStack automation for CloudOps, ITOps & DevOps at scale,”

http://saltstack.com/.
[31] “OpenStack TelcoWorkingGroup,” https://wiki.openstack.org/wiki/ Tel-

coWorkingGroup.
[32] “Cosmos,” http://cnp.neclab.eu/clickos/.

