
Managing the File System from the Kernel

Shihabur Rahman Chowdhury∗, Constantin Adam∗, Frederick Wu∗, John Rofrano∗, and Raouf Boutaba†
∗IBM TJ Watson Research Center

{schowdhu | cmadam | fywu | rofrano}@us.ibm.com

† David R. Cheriton School of Computer Science, University of Waterloo
rboutaba@uwaterloo.ca

Abstract—In this paper, we investigate the benefits of adding
autonomic capabilities inside the operating system. We have
developed and implemented a solution that focuses on three
use cases (continuous file permission compliance, dynamic disk
cleanup, and accidental removal protection) for the file system,
and encapsulates all the respective file system monitoring, trou-
bleshooting and error remedial operations in a Linux kernel
module. The main benefits of this approach are the capability
to detect issues instantly when they occur, and fix these issues
transparently, with the invoking applications being unaware of
their occurence. These capabilities are not present in external
agent architectures, including contemporary configuration man-
agement systems, like Puppet, Chef, or CFEngine. We have built
a prototype and evaluated the performance of the most resource
intensive use case, dynamic disk cleanup, using the FileBench file
system benchmarking tool.

I. INTRODUCTION

In this paper we investigate the benefits of adding au-
tonomic capabilities inside the operating system. We focus
initially on making the file system self-managing. To perform
our study, we have built a kernel module that allows the
applications to express their access rights and disk usage re-
quirements, and that autonomically checks and enforces these
constraints on the underlying file system. The main advantage
of this design, compared to external agent based architectures
(i.e. contemporary configuration management systems, such as
CFEngine, Puppet, or Chef, and other autonomic computing
architectures, described in [1]), is its ability to detect any issues
before they occur, take immediate actions to remediate them,
and hide the occurrence of these events from the applications
interacting with the file system.

Our system exposes an API which allows the developers
to specify the disk cleanup and access rights policies for the
files used by their applications. This design is in line with the
DevOps idea of increasing efficiency and reducing the chance
of failure through collaboration between developers and IT
administrators. Before deploying applications in Production,
IT administrators will test extensively the developer specified
policies. This will reduce the chances of mis-configuration due
to the lack of knowledge of application internals. Allowing the
developers to specify the application policies will also reduce

The first author is a PhD student at David R. Cheriton School of Computer
Science, University of Waterloo (sr2chowdhury@uwaterloo.ca). This
work was submitted during his summer internship at IBM TJ Watson Research
Center

the configuration overhead of the applications once they are
deployed.

Pushing more intelligence down to the operating system
level also brings several important benefits to the management
of large data centers. It streamlines the operation of the data
center, by eliminating the need to monitor the file systems,
raise alerts, or produce a large variety of tickets that cover
issues such as adding or removing disk space, cleaning up disk,
or detecting inappropriate access rights and modifying them.
It also reduces human involvement in file system management
tasks, leading to better resource utilization, less configuration
errors, and protecting files that are essential to application
operation from accidental deletion.

Our approach is inspired by the autonomic computing
philosophy described in [2]. However, in contrast with [2],
where each managed element (including the operating system)
is monitored by an external agent (the M in the MAPE-K
autonomic loop), we seek to add the autonomic management
capabilities at the lowest possible level in a server: at the OS
level. This design aims to eliminate the agents that monitor and
manage the operating system, by including this functionality
in the OS itself. For example, instead of monitoring if an
application failed, the operating system can be instructed to
keep it running, in the same way a service can be run using
initd. A second example along these lines could be the
elimination of cron jobs to periodically back up file systems.
The operating system can be instructed to initiate backups
whenever an essential file has been changed, or whenever a
certain amount of change happens.

To further highlight the benefits of this design, consider the
following two examples. First, files come with different access
privileges. Changing these rights opens security loopholes.
Using our approach, we can prevent any non-compliant access
right change from taking effect. In contrast, an external agent
architecture will detect the access rights violation after it takes
place, potentially leaving the system in a vulnerable state from
the instant when the change takes place, until the moment
when the external agent runs a new monitoring cycle, detects,
and fixes that.

Second, in the UNIX world, we usually over-provision disk
space, by carving volumes out of a larger disk, so that there
is unallocated disk space to grow the volumes. Disk volume
growth is usually a manual system administrator task. Even
more so, with hypervisors in the cloud, there is additional disk
capacity to grow volumes. Consider a process that attempts to
write a 16 GB core dump into a file system that has 2 GB978-1-4799-0913-1/14/$31.00 c© 2014 IEEE

free space left. If we use an unmodified operating system and
an external monitoring agent this operation will fail, and an
error code will be returned to the application. Depending on
whether the application treats this operation as a transaction
or not, the attempted write will abort, and the partial data
written removed, or the disk will get full. Depending on the
application’s error handler, it will return an error message,
or it may even crash. This creates more problems, and work
because, in addition to understanding what went wrong, we
are also now potentially left with the tasks of cleaning up the
disk, and restarting the application. If the operating system
is equipped with the capabilities of managing the file system
by itself, it will detect the insufficient disk space before the
write occurs, and will try several remediation actions (such as
deleting or compressing files, expanding the file system, asking
for more disk space from a hypervisor). If these actions are
successful, the write operation will proceed, and the initial
insufficient disk space situation will be completely transparent
to the application. Our goal is for the OS to manage itself
in such a way that applications rarely receive ’out of space’
errors.

An additional benefit of implementing autonomic capabil-
ities at the OS level is ensuring high system availability. Our
approach can prevent application failures by detecting the file
system error conditions and providing an immediate remedy
for the issues. If additional action is needed, the OS can alert
the administrators, but any high availability applications can
keep running until a permanent solution is found. Management
systems external to the OS cannot achieve this functionality,
and in the long run increase maintenance costs over the cost
of maintaining the (modified) OS itself.

The rest of the paper is organized as follows. Section II
reviews related work. Section III provides an overview of the
system policies, use cases, architecture and the rationale behind
our design decisions. Section IV provides a detailed description
of the implementation. Section V provides an evaluation of the
design. Finally, we conclude and outline future work in Section
VI.

II. RELATED WORK

Different research efforts in this field have looked at adding
self-managing capabilities at the operating system level, or
building autonomic storage management solutions.

Self-managing capabilities have been built into various
commercial and research operating systems. The SElf-awarE
Computing model (SEEC) [3] allows developers to collabora-
tively create adaptive systems that understand user’s goals and
constantly monitor and re-enforce those goals. AcOS [4] is
an Operating System that proposes an autonomic framework
and demonstrates autonomic CPU allocation strategies. This
work is done in the context of intelligent resource allocation
to achieve user specified service-level objectives, while main-
taining the CPU temperature under a threshold. NTFS, starting
with Windows Server 2008 has self healing capabilities [5]:
block level errors can be detected and corrected without user
intervention. NITIX OS was the first commercially available
OS [6] that claimed to have self-* capabilities. At the file
system level, NITIX regularly performs a backup that would
allow restoring the data in case of failures. Sun’s ZFS [7]

has self healing capabilities (can automatically restore data
after a failure). It relies on a backup to restore data after
some failure occurs. BORG [8] is a system that focuses on
reorganizing the file blocks for better I/O performance. The
Elastic Quotas file system [9] gives the users the illusion of
having virtually unlimited disk space. To achieve this objective,
it classifies files in 2 categories: regular and elastic. Only the
regular files are accounted towards the quota limitation. The
elastic files are subject to removal when the disk usage goes
above a threshold, and the user exceeds his quota. The elastic
files are managed through a duplicate directory structure and
shadow users. It also provides the capability for the users to
specify policies (i.e. remove files that are older than 60 days).
The implementation is different from our work. The Elastic
Quotas file system periodically scans and takes action. Instead,
we only take action when required.

A number of research efforts have been made towards
building autonomic storage management systems, and inte-
grating them into the structure of data centers. The design
and implementation of an autonomic storage manager is
presented in [10]. It enables the specification of allocation
policies in terms of capacity and performance metrics. It also
automatically raises alerts if these constraints are violated.
This system performs resource allocation, by translating high-
level policies into low-level commands, but it does not address
in detail the self-managing or self-healing properties of an
autonomic system. Nectar [11] is Microsoft’s automated data
and compute management framework for data centers. Old data
is automatically removed from the system and re-computation
is avoided by leveraging the old results saved in the system.
In [12] authors develop SCC, a storage configuration compiler
for cluster applications that automates cluster configuration de-
cisions based on formal specifications of application behavior
and hardware properties. This compiler’s ability to configure
heterogeneous, rather than homogeneous cluster architectures,
enables it to meet the application Service Level Agreements
(SLAs) while achieving 2-4.5x cost savings. In [13] the
authors propose Polus, a framework for policy based storage
management. It removes the necessity to write code that maps
high level QoS requirements to low level device actions,
thus reducing the complexity of the system administrators’
jobs. Polus allows the SAs to express their requirements as
a high level rule of thumb specification and learns about
the system’s conditions and quantifies these specifications to
specific implementations. It also continuously monitors the
system for QoS violations and performs the necessary actions
to bring the system back to compliance.

III. SYSTEM OVERVIEW

The autonomic file system manager presented in this paper
has two major components. One component interacts with
the user-space applications to setup policies that represent
in a universal way the knowledge used to manage the file
system. The second component interacts with the file system
and implements the system behavior specified in the policies.
In the rest of this section, we describe three use cases around
which we have built our system, the policies and how they
apply to the use cases, review the system architecture, and
discuss our design choices.

A. Policies

We consider two types of policies: policies defined by
users/applications, and system-wide policies. The former as-
sign to the files disk cleanup categories, or access permission
masks. The latter configure the disk cleanup categories (e.g. set
the maximum age of debug files as 2 days), and assign groups
of files to a specific category (based on their location, or type).
System-wide policies also define default rules (e.g. similar to
’umask’ assigning default access rights to the files, a system-
wide policy can maintain a mask of ’rwxr-x—’ to all the files in
a directory, or specify that world-writable files are not allowed
on this file system). Finally, system-wide policies allow the
system administrator to configure the policy precedence (e.g.
define precedence between folder and group policies).

We have initially classified the files into four categories:
required, debug, audit, and temporary. Each category has a set
of disk cleanup rules associated with it. Once a user or an
application assigns a file to a specific category, that file is by
default entitled to the rules that apply to that category. Policies
can be applied to individual files, to folders (same policy for
all the files contained in the folder), or to groups of files, based
on their type. Individual file policies override folder-wide or
group-wide policies.

The significance of the disk cleanup categories is as
follows. Files marked as required are essential for applica-
tion operation, and they should never be deleted, under any
circumstances. Temporary files are the first candidates for
deletion. Temporary files (e.g. files used to install a package,
or backup a database) have a shorter lifespan, and are used less
frequently after the first use. Debug files (e.g. memory dump
files) are similar to temporary files, but they can be kept for
a longer period of time to troubleshoot application, security,
or performance issues. Audit files (e.g. log files) are usually
kept for long periods of time, but they are accessed less, as
they get older. After a specific period of time, these files can
be compressed to save space.

A system-wide policy defines how to handle the files that
have not been assigned to any disk cleanup category. These
files can either be assigned to a default category (e.g. audit),
or inherit the category of the folder containing it. An example
of a policy (specified in JSON) is:

{
"disk_cleanup_category" : "debug",
"maximum_age" : 2

}

This policy specifies that when a debug file is at least 2
days old, it can be deleted.

B. Use cases

Our system is capable of handling three types of problems,
without requiring any human involvement: controlling access
rights changes to files, keeping file system usage within
specified boundaries, and preventing deletion of files which
are marked as required by the applications.

1) Continuous File Permission Compliance: This use case
is triggered when a user or application tries to change the per-
missions of files. While ’umask’ sets up the initial permissions,

nothing prevents the user from changing these permissions,
until there is a security incident, or a failing audit. The file
users or applications specify permission masks for the files
they own. Our policies are more flexible than the initial umask,
and can allow a range of permissible values, while preventing
others. The autonomic kernel module discards any access
rights changes that are incompatible with these permission
masks. One way to detect this today is by scanning the entire
file system and checking all the permissions, a potentially
resource-intensive operation that impacts server performance.
Our approach is not to allow this in the first place.

2) Dynamic Disk Cleanup: Dynamic disk cleanup reac-
tively takes action when the disk usage violates existing poli-
cies. The remediation process involves three lines of defense:
maintaining desired levels of free disk space, automatically
handling out of space conditions, and raising alerts when
everything else fails. This use case can be triggered by creation,
deletion, or editing of files.

Best practice suggests maintaining a certain percentage
of free space in file systems. Rather than having an agent
monitor for file system utilization, we propose that the file
system monitors itself as it manipulates files. In order to
accomplish this, we introduce the minimum, maximum, and
desired utilization thresholds (expressed as actual disk space
or utilization percentage). The minimum threshold specifies the
smallest size that a file system can shrink to. The maximum
threshold specifies the largest size to which a file system can
be expanded to. Passing the maximum threshold will always
raise an alert to a higher level system. The maximum threshold
ensures that file systems don’t grow out of control. The desired
free utilization threshold specifies the amount of free space
that should be maintained in the file system. When a write
operation reduces the amount of available disk space below
the desired threshold, the autonomic kernel module launches
an asynchronous disk cleanup. If the disk cleanup fails to
free enough space, then the file system will be expanded to
accommodate the write operation, while also maintaining the
desired free space.

When the file system usage exceeds the desired threshold,
the autonomic kernel module tries to remediate the situation
first by deleting the files that exceed a policy-specified age and
are marked as not required, and second by expanding the file
system. If that is not enough, other file systems are cleaned
up, and an attempt is made to shrink them to their minimum
and make space to allocate to the expanding file system. The
autonomic component raises an alert if all remedies fail. If the
utilization goes below the minimum threshold, the autonomic
component shrinks the file system to reclaim disk space that
can be used in the future to expand other file systems.

In order to determine the list of files to delete, the kernel
module provides an interface to the applications and users,
through which files, or folders (and their entire contents)
can be assigned to the four categories described in section
III-A (required, debug, audit, and temporary). In addition, the
autonomic kernel module complies during the disk cleanup
process with all the system-wide policies in place, such as
identifying folders or file groups that can be assigned to
one category, or defining a global age when files of a given
category can be removed.

3) Accidental Removal Protection: The third use case is
triggered when a user or application tries to delete a file that
was previously marked as required. Although this capability
is already in place (a file that is marked as ’immutable’ in
Linux cannot be deleted unless the ’immutable’ attribute is
unset manually), it can be very easily implemented using our
proposed framework. For example, our manager can set the
’immutable’ flag on all the files that are declared as required
by the applications or users.

C. Architecture

The autonomic kernel module shown in Figure 1 imple-
ments the core functionality described in the use cases above.
Instead of modifying the file system to handle these use cases,
we followed the concept of stacked file systems [14], and
bundled this functionality into a kernel module. The autonomic
kernel module is placed on top of the Linux Virtual File System
(VFS), and overwrites a subset of VFS system calls. First, it
checks if a condition that triggers a use case occurred. Next,
it tries to take remedial actions if required. Finally, it passes
the execution control to the original system call.

The autonomic kernel module also has an interface that
allows the applications and users to specify their file manage-
ment policies. This interface is implemented with the help of a
virtual device, as described in section IV-B. Applications reg-
ister their policies by sending control commands to this device,
which are interpreted by the autonomic kernel module. We also
provide a set of shell commands that use the aforementioned
interface for users to register their policies.

D. Design Rationale

The main objective of our work is to demonstrate the
benefits of pushing autonomic capabilities all the way down
to the operating system. The main benefit of an autonomic
file system is the ability to detect any issues right before they
occur, take immediate actions to remediate them, and make
these events transparent to the file system operations.

For example, consider a process that attempts to write a 2
GB file to a file system which has 1 GB space left. The file
system manager should intercept the write operation, detect
the insufficient disk space condition, and take the necessary
actions (such as deleting/compressing files, or even expanding
the file system) before passing the control back to the file
system.

The design choices we considered were: writing a user-
space program, changing the kernel, or implementing a kernel
module. A user-space program needs to know about any file
system changes before taking action. The only way to accom-
plish that is to subscribe to the iNotify kernel subsystem [15].
In this case, the file system events are captured after they
occur, and remedial actions cannot be taken transparently. For
example, in the disk full scenario, the write system call will
fail before the file system manager is given the opportunity to
clean or expand the disk. That leaves us with the remaining
two options, which both run in the kernel space. As the
overhead of changing and rebuilding the entire kernel is much
higher than that of developing a separate kernel module we
chose the latter option. However, for deployment in Production
systems, a kernel enhanced with these functionalities would

be a better option. As opposed to solutions based on periodic
monitoring, our approach has the advantage of immediately
detecting events and taking remedial actions. We demonstrate
the effectiveness of taking these reactive actions in section V.

As discussed in section III-C, the autonomic kernel module
is developed on top of VFS. This allows our module to work
with a wide range of file systems, rather than restricting
its usability to a specific file system implementation. The
portability, however, comes with a performance cost, compared
to a solution that is implemented in the file system.

Our design moves configuration decisions from the appli-
cation users to the application developers. The rationale behind
this is that application developers have a better understanding
of how the applications work and their resource requirements.
Another important benefit of this approach is that the appli-
cation development process goes through extensive testing, so
the file system management configuration set by application
developers is much less error-prone that a similar solution
provided by a user.

IV. IMPLEMENTATION

To show the effectiveness of our approach, we have built
a prototype of an autonomic file system manager, and im-
plemented it as a loadable Linux kernel module. We chose
to implement the prototype in a kernel module, rather than
modifying the kernel itself, because a module can be rapidly
developed, built, tested and experimented with. We chose
Linux as the operating system because it is open source, and it
exposes a set of low level routines to write loadable modules.
In this section, we discuss the implementation of the prototype:
its interfaces with the file system and the user-space programs,
its policies and its storage subsystem.

A. File System Interface

The file system management process is activated upon
detection of events that change file and directory permissions,
or create, remove, or edit files. To achieve this behavior, we
have modified the kernel system call table to point to our
modified implementation of each system call that triggers any
of the events mentioned above.

We have modified the implementation of each system call
that changes the state of the file system by adding a policy
compliance check, and a set of remedies to be applied if
the compliance check fails. After these additional steps are
completed, the call proceeds with its normal execution. For
example, when a write request is detected, the autonomic
manager retrieves the file corresponding to the file descriptor
parameter, and the file system where this file is located. Then
it checks if the utilization of the file system after the write is
compliant with the usage policy (i.e. the amount of free space
is still above the desired threshold). If the compliance check
fails, the manager attempts to apply automated remedies (clean
up or expand the file system). After the automated remedies
complete successfully, the original write system call is invoked
to write the file on the disk.

To accomplish this we modified the kernel’s system call
table during the module’s bootstrapping. The entries corre-
sponding to our desired system calls in the table were modified

System Call Table

sys_open

sys_write

sys_unlink

.

.

.

.

Autonomic Manager

(Kernel Module)

Custom System Calls

custom_sys_unlink:

 sys_unlink()

custom_sys_write:

 sys _write()

custom_sys_open:

 sys_open()

Access mask enforcer

File system expander

System call

interface

glibc

Virtual Character

Device

Configuration

Engine

Linux Virtual File System (VFS)

ext2 ext3 ext4 xfs reiserfs

sys_unlink:

sys_write:

sys_open:

......

Kernel

Space

User Space

Process

User

Space User space API

(ioctl commands)

Disk Cleaner

Fig. 1. System Architecture

to point to our provided implementation. Once a system call
is intercepted, the low level routines of VFS exported by the
Linux kernel are used to read file system changes and error
conditions are figured out.

Most of the actions to read the file system state and
changes, as well as to remedy error conditions are performed
through the VFS interface. Exceptions to this rule are the
operations of expanding or shrinking a file system, which are
performed using Logical Volume Management (LVM) tools.
The LVM commands are spawned from the kernel module to
perform modifications to the volumes on which the file system
resides.

B. User-space Interface

The user-space interface enables communication between
the autonomic file system manager on one side, and applica-
tions and users on the other side. Users and applications use
the interface to send to the autonomic manager the policies
that define the file system usage requirements. The interface
comes in two different flavors, as described below.

First, a configuration file stores both system-wide and
directory / file specific policies. The autonomic kernel mod-
ule loads this file during bootstrapping, and sets its internal

state accordingly. During steady-state operation, the autonomic
manager can detect any changes made to the file system.
Upon detecting a change to the configuration file, the manager
automatically reloads its policies. By editing this configuration
file, a user can change the manager behavior on the fly, without
restarting it.

Second, user-space applications can use an API to the
autonomic kernel module to express their file system usage
requirements. We implemented this API with the help of
a virtual device, by exploiting the fact that a user process
can send low level I/O commands to any device (through
ioctl system call) along with their own parameters. Our
autonomic kernel module registers a virtual device1 with the
OS during bootstrapping. Any ioctl command issued by a
user process to this virtual device is intercepted by the ioctl
implementation provided by our autonomic kernel module,
which interprets the commands as configuration commands for
itself, and sets its configuration parameters accordingly. In our
reference implementation the following configuration options
are allowed from a user-space program:

• Specify permission mask for a file or directory

1a physically non-existent device

• Categorize a file or directory into one of the four
proposed categories

C. Policies

Policy authoring, storage and management tools have
been already extensively studied in various contexts [16].
Developing a full policy framework is outside the scope of
this paper. Therefore, we assume the existence of a policy
delivery platform that enables the propagation of updates to
all the managed servers. We also adopt a very simple policy
specification format, JSON for specifying system-wide and
user-defined policies in our reference implementation. These
policies are persistently stored in the disk as configuration files
and are loaded during bootstrapping.

V. EVALUATION

A. Evaluation Setup

We have run our experiments in a Ubuntu 13.04 Linux
Virtual Machine, with an ext3 file system, 2 Virtual CPUs, 3
GB of RAM, and 30 GB hard disk. The virtual machine is
hosted on an NTFS file system. We have partitioned the hard
disk into a 15 GB system partition, and a 15 GB partition
allocated for the measurements. We have used Logical Volume
Manager (LVM) to create file systems with various initial
sizes on the experimental partition. To ensure fairness between
different methods and between each run, the experimental file
system was formatted prior to each run.

We have used FileBench [17] and Postmark [18] two of the
most popular file system benchmarking utilities (as shown in
[19]) to evaluate the load that the autonomic file system man-
ager puts on the system, as well as the manager’s effectiveness
in keeping the file system utilization within bounds. During
the evaluation process, we took into account the limitations
of these tools. First, both FileBench and Postmark are micro-
benchmarking tools that put a short-term load on the system
to measure its I/O performance, but are not able to emulate
long-term steady state behavior, a feature needed to perform a
realistic study of disk cleanup and disk expansion processes.
However, given their features (most notably the capability to
generate various workloads, and their wider acceptance), we
decided to use these tools, rather than developing our own
custom test suite.

We used FileBench to measure the overhead that the
autonomic manager imposes on the system when no disk
cleanup or disk expansion procedures are triggered. In this
case, the overhead still occurs, because the file system manager
intercepts each write system call and performs checks on the
file system. In fact, this will comprise the majority of the total
introduced overhead, because it happens on a much faster time
scale than the disk cleanup or expansion activities. Filebench
provides the capability to generate workload following a
number of predefined profiles. Each profile has different read
/ write ratios, and represents the I/O pattern of some real life
application. For the purpose of our studies we have run the
experiments using two predefined profiles – simulating the
workload of a file server, and a web server.

We have used Postmark (which emulates the workload of
a mail server) to measure the effectiveness of the autonomic

file system manager in keeping the utilization within bounds.
We created a scenario where the file system utilization grows
rapidly, and observed the way in which the disk cleanup and
expansion procedures operate. For these experiments, we have
set an upper bound of 90% for the disk utilization.

We ran each experiment for 20 minutes with a 30-second
statistics collection interval and repeated that for 3 times. The
rationale behind running each benchmark multiple times is to
observe the variations in performance due to background task
and discard any outliers. However, the difference was not very
significant in the obtained results and we took the best result
for 3 runs. We configured the average file size, the number of
files and the I/O size used parameters for both FileBench and
Postmark according to the guidelines in [20].

B. Evaluation Metrics

To determine the overhead that the autonomic manager
imposes on the system, we have measured the averages of
throughput (specified in I/O operations per second) and CPU
time per I/O operation, as calculated by FileBench at each
statistics collection interval.

To measure the effectiveness of the autonomic file system
manager, we captured the file system utilization and size over
time in 5-second intervals.

We performed both experiments with and without the
autonomic manager activated, and compared the results.

C. Evaluation Scenarios

Two evaluation scenarios are presented. In the first sce-
nario, we monitor the performance overhead of the file system
manager while it is running in a sufficiently large file system,
where no disk cleanup or disk expansion procedures are
triggered. In the second scenario, we start with a smaller
sized file system, and perform disk cleanup and disk expansion
operations, as soon as the utilization crosses a threshold (90%).
We examine the disk utilization against time to see how well
disk cleanup and expansion work.

D. Results

From figures 2 and 3 we estimate the overhead imposed
by the autonomic manager at about 10%. This overhead comes
from the write operations. We introduce an additional read op-
eration in each write system call. If we estimate the overhead of
this read I/O operation to be about 20% per write system call,
we get an overhead of 10% when half of the I/O operations are
reads and the other half are writes. We make no changes to the
read operations, and therefore there is 0 additional overhead.
We provide a similar explanation for the better performance
of the autonomic file system manager for the web server
workload. In the case of the file server workload, about half of
the I/O operations are reads and half are writes. For the web
server workload, the ratio between reads and writes is about
10 : 1([20]), and hence our system performs better in this case.
One thing to notice at this point is the percentage of introduced
overheads in terms of CPU time and throughput are not the
same. The reason behind this difference is that although we
directed all the benchmarking I/O to a separate disk for better
isolation from other background tasks, we had the CPU shared

 4000

 4200

 4400

 4600

 4800

 5000

 0 200 400 600 800 1000 1200

T
hr

ou
gh

pu
t (

op
s/

s)

Elapsed Time (second)

Throughput (File Server Profile)

Autonomic Manager
Regular FS

(a) File Server

 6000

 6200

 6400

 6600

 6800

 7000

 0 200 400 600 800 1000 1200

T
hr

ou
gh

pu
t (

op
s/

s)

Elapsed Time (second)

Throughput (Web Server Profile)

Autonomic Manager
Regular FS

(b) Web Server

Fig. 2. Throughput

 660

 680

 700

 720

 740

 760

 780

 800

 0 200 400 600 800 1000 1200

C
P

U
 T

im
e

/ o
ps

 (
µs

)

Elapsed Time (second)

CPU Time Per Operation (File Server)

Autonomic Manager
Regular FS

(a) File Server

 420

 425

 430

 435

 440

 445

 450

 455

 460

 0 200 400 600 800 1000 1200

C
P

U
 T

im
e

/ o
ps

 (
µs

)

Elapsed Time (second)

CPU Time Per Operation (Web Server)

Autonomic Manager
Regular FS

(b) Web Server

Fig. 3. CPU Time

between different applications. Therefore, the results for CPU
time and file system throughput are not the same.

Figure 4 shows that the system behaves as expected in the
case when the file system utilization increases over time. If we
are given an elastic bound for expansion, the autonomic man-
ager can accommodate writes without causing the processes
to fail, while a regular file system fails as soon as it runs out
of allocated space.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the benefits of placing
the file system manager inside the operating system kernel. We
have designed and implemented a solution that encapsulates
the file system monitoring, troubleshooting and error remedial
operations in a Linux kernel module. The main benefits of
our approach are the capability to detect issues instantly when

they occur, and fix these issues transparently, without the
invoking applications being aware that they occurred. These
capabilities are not present in external agent architectures,
including contemporary configuration management systems,
like Puppet, Chef, or CFEngine. We have investigated the
performance and overhead of this solution.

In order to deploy this solution in a Production environ-
ment, we need to address a number of research challenges.
First, we need to guarantee the soundness of the policy speci-
fication, as any holes in this specification can lead to a security
breach. Second, we must be able to associate applications
with policies, as well as with the resources to which these
policies apply. For example, an application should not be able
to mark files that do not belong to it as “temporary”. Also,
when an application is uninstalled, all the policies specified
by that application should be revoked. Third, while our study

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160
 0

 500

 1000

 1500

 2000

F
ile

 S
ys

te
m

 U
til

iz
at

io
n

(%
)

F
ile

 S
ys

te
m

 S
iz

e
(M

eg
ab

yt
es

)

Elapsed Time (second)

Autonomic Manager - FS Utilization
Autonomic Manager - FS Size

Regular FS - FS Utilization
Regular FS - FS Size

Fig. 4. File System Utilization

has thus far focused on the file system, it could be extended to
manage other system entities, such as processes, memory, or
CPU. Fourth, an autonomic operating system represents one
layer in an automation architecture. Although the autonomic
management capabilities within the OS ensure its smooth
operation by tackling the error conditions by itself, a higher
layer component in the automation architecture can look into
the root cause of the errors and take preventive measures to
stop these from occurring at the first place. Finally, we need
to integrate our system with a policy management system
(covering the definition and delivery of policies) for a full
production scale deployment.

In conclusion, this work is a step in investigating how
to design data center management processes that default to
automation and only involve humans when everything else
fails. We call this approach Extreme Automation. By adding au-
tonomic management functions inside the operating system, we
aim to implement Extreme Automation management processes
that are scalable with the growth of the cloud, continuously
monitor the state of the system to detect any issues, and
transparently fix these issues before they turn into errors that
perturb the system operation. While our initial work is focusing
on making the file system self-managing, we think that the
concept can be expanded to other parts of the operating system
as well.

REFERENCES

[1] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing
– degrees, models, and applications,” ACM Computing Surveys (CSUR),
vol. 40, no. 3, p. 7, 2008.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[3] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agar-
wal, “SEEC: A framework for self-aware computing,” MIT CSAIL
Technical Report, MIT-CSAIL-TR-2011-046, 2010.

[4] D. B. Bartolini, R. Cattaneo, G. C. Durelli, M. Maggio, M. D.
Santambrogio, and F. Sironi, “The autonomic operating system research
project: achievements and future directions,” in Proceedings of the 50th
Annual Design Automation Conference. ACM, 2013, p. 77.

[5] “Self-healing NTFS in windows server 2008 and windows vista,”
http://blogs.technet.com/b/apawar/archive/2008/02/14/self-healing-ntfs-
in-windows-server-2008-and-windows-vista.aspx.

[6] “NITIX - autonomic linux-based server operating system,”
http://www.iccci.com/images/Nitix Letter lo.pdf.

[7] “Oracle solaris ZFS administration guide,”
http://docs.oracle.com/cd/E19253-01/819-5461/zfsover-2/.

[8] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Ran-
gaswami, and V. Hristidis, “BORG: Block-reorganization for self-
optimizing storage systems,” in FAST, 2009, pp. 183–196.

[9] O. C. Leonard, J. Nieh, E. Zadok, A. Shater, J. Osborn, and C. P.
Wright, “The design and implementation of elastic quotas: A system
for flexible file system management,” 2002.

[10] M. Devarakonda, D. Chess, I. Whalley, A. Segal, P. Goyal, A. Sached-
ina, K. Romanufa, E. Lassettre, W. Tetzlaff, and B. Arnold, “Policy-
based autonomic storage allocation,” in Self-Managing Distributed
Systems. Springer, 2003, pp. 143–154.

[11] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,
“Nectar: automatic management of data and computation in datacen-
ters,” in Proceedings of the 9th USENIX conference on Operating
systems design and implementation. USENIX Association, 2010, pp.
1–8.

[12] H. V. Madhyastha, J. C. McCullough, G. Porter, R. Kapoor, S. Savage,
A. C. Snoeren, and A. Vahdat, “scc: cluster storage provisioning
informed by application characteristics and slas,” FAST’12, 2011.

[13] S. Uttamchandani, K. Voruganti, S. Srinivasan, J. Palmer, and D. Pease,
“Polus: Growing storage qos management beyond a 4-year old kid,”
in Proceedings of the 3rd USENIX Conference on File and Storage
Technologies. USENIX Association, 2004, pp. 31–44.

[14] J. S. Heidemann and G. J. Popek, “File–system development with
stackable layers,” ACM Transactions on Computer Systems (TOCS),
vol. 12, no. 1, pp. 58–89, 1994.

[15] “inotify - monitoring file system events,”
http://linux.die.net/man/7/inotify.

[16] R. Boutaba and I. Aib, “Policy-based management: A historical per-
spective,” Journal of Network and Systems Management, vol. 15, no. 4,
pp. 447–480, 2007.

[17] “Filebench: Filesystem benchmarking tool,”
http://sourceforge.net/projects/filebench/.

[18] J. Katcher, “Postmark: A new file system benchmark,” Tech-
nical Report TR3022, Network Appliance, 1997. www. netapp.
com/tech library/3022. html, Tech. Rep., 1997.

[19] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer, “Benchmarking file
system benchmarking: It* is* rocket science,” HotOS XIII, 2011.

[20] P. Sehgal, V. Tarasov, and E. Zadok, “Evaluating performance and
energy in file system server workloads.” in FAST, 2010, pp. 253–266.

