
pWeb : A Personal Interface to the World Wide Web

Reaz Ahmed∗, Shihabur Rahman Chowdhury∗, Alexander Pokluda∗, Md. Faizul Bari∗,
Raouf Boutaba∗ and Bertrand Mathieu††David R. Cheriton School of Computer Science, University of Waterloo, Canada

{r5ahmed | sr2chowdhury | apokluda | rboutaba}@uwaterloo.ca
†Orange Labs, Lannion, France

bertrand2.mathieu@orange.com

Abstract—Centralized social networking and media sharing
portals provide inadequate support for preserving user privacy,
content ownership and control. These problems can be mitigated
through distributed Web services as demonstrated by a number of
academic projects and industrial deployments. In general, these
distributed services do not assign globally recognized, persistent
names to the user devices. As a result, these solutions work
in isolation and also cannot inter-operate with traditional Web
technology. In this work, we present a decentralized and scalable
platform, named pWeb, for distributing web services, like online
social networks and media streaming, across end user devices.
pWeb assigns Internet compatible names to end user devices, and
provides name resolution and directory services. A user can retain
ownership, and make the services and contents in his devices
searchable and accessible at different privacy levels, e.g., friends,
family and public. New services can be easily developed and
deployed over the pWeb platform. We have developed a working
prototype of the platform, and to demonstrate its effectiveness we
have implemented a video streaming application for Android and
Windows platforms. We also present performance results from
our prototype implementation.

I. INTRODUCTION

The World Wide Web has become the primary means for
sharing personal multimedia contents among friends, family
and the public. Media sharing portals, like YouTube, Metacafe
and Flicker allow us to share videos and photos for free. Online
social networks, like Facebook, Twitter and Google+, offer
personal blogging and multimedia content sharing for free.
However, these free Web services are just one side of the
coin. The other side comes with a number of issues involving
privacy, ownership and control.

In many cases, our real-life privacy is compromised
through our online activities. We trust the Web service
providers with our uploaded contents. But in the background,
our online contents and activities are being analyzed and
monitored by different agencies. The recent PRISM scandal
illustrates the reality of large-scale digital surveillance. Apart
from the privacy issue, we also run into the risk of loosing
the ownership and control of our personal digital contents.
Many service providers hold the right to reproduce, publish
and distribute the uploaded contents. Moreover, in most cases,
the end user license agreement can change without notice.

Decentralized solutions have been proposed to mitigate
privacy, ownership and control problems in contemporary
centralized Web services. For example, PeerSon, Persona and
SafeBook propose to distribute the contents in an online social
network over the end-user devices. Peer-to-peer video stream-
ing solutions, like PPLive and Tribler, focus on distributing

contents over their users’ machines instead of uploading them
to a centralized media streaming portal. However, all of these
solutions treat user devices as second-class citizens in the
Internet. User devices are not assigned globally recognized and
persistent names. As a result, each of these solutions works in
isolation and also cannot inter-operate with traditional Web
technology.

Now imagine what can be achieved if each device had a
unique, DNS-compatible name. We could use a regular Web
browser to remotely control, configure and access the services
and contents in our devices. We could share contents with our
friends and family directly from our devices. New applications
would emerge to improve our privacy through better control
on our contents. Moreover, a search engine could index public
shares in the end devices, giving them a global visibility.
With this vision in mind, we have developed a simple but
effective framework, named pWeb (www.pwebproject.net), for
device naming and searching. We envision pWeb as a global
platform for distributed Web services. pWeb is compatible with
DNS and contemporary Web search engines. Each component
within pWeb can be deployed independently without any cen-
tral control. pWeb provides a global platform for developing
distributed Web services. We have also developed a distributed
video-streaming application to demonstrate the effectiveness
of pWeb. The purpose of this paper is to present the pWeb
architecture, along with our experience and lessons learned
while developing and deploying pWeb.

The rest of this paper is organized as follows. In §II we
present the related research works. We present the design goals
and an overview of the pWeb architecture in §III followed
by the functional specification in §IV. Design, implementation
and deployment details for each component in the pWeb
architecture are presented in §V. In §VI, we present the
performance results from our live pWeb deployment in the
Internet. Finally, we conclude in §VII.

II. RELATED WORKS

In this section, we discuss a representative set of research
works on decentralized online social networks, device to
device communication for decentralized Web service hosting
and alternative name resolution architectures to handle the
explosion of the number of mobile devices in use.

A. Decentralized Social Networks

A number of recent research efforts strive to address the
privacy, ownership and control problems in centralized Online

Social Networks (OSNs). These research works propose a de-
centralized architecture for OSNs to overcome the limitations
posed by the cloud-based centralized architecture as described
in [1]. PeerSon [2], SafeBook [3] and SuperNova [4] are some
of the prominent proposals for decentralized OSNs. These
systems offer a variety of services ranging from location-
based social networks to social music sharing services and also
differ in the degree of decentralization they offer. However,
they focus more on social network-like use cases, rather than
providing a generic platform for developing decentralized Web
services. A comprehensive survey of these decentralized OSNs
can be found in [5].

B. Device to Device Communication

Recently, FreeDOM [6] proposed a Web browser-based
platform for decentralized Web service hosting. Current Web
browsers support a number of technologies like WebRTC [7]
for direct interaction between Web-browsers, WebSQL [8] for
key-value store, and IndexDB [9] for trusted and untrusted
data storage. FreeDOM proposes to leverage these browser
technologies to build a decentralized platform for Web hosting.
The authors also demonstrate the design of a decentralized
Wikipedia-like service using the proposed FreeDOM model.
However, the FreeDOM model does not focus on the identifica-
tion of the end devices. More recently, authors of [10] proposed
Clone2Clone, a cloud-based communication and computation
offloading mechanism for device-to-device communication.
The authors propose to host a smartphone’s clone image in
a public or private cloud platform and perform all the compu-
tation along with the device-to-device communication between
these clones. An end device needs to communicate with the
cloud to synchronize the state with its clone. This type of
clone-based peer-to-peer network also allows users to directly
host content from their device. However, creating clone images
of the smartphones and hosting them in cloud platforms require
formidable storage and computation resources. Hence, their
proposed method is more suitable for the device or firmware
provider rather than the smartphone users. Clone2Clone’s
dependency on cloud services also inherits all the privacy and
ownership concerns that we aim to resolve using pWeb.

C. Alternate Name Resolution Architectures

A number of research works have been carried out in
the context of Information Centric Networking (ICN) for
alternative name resolution architectures. The idea underlying
ICN is to perform routing based on content names. The target
is to make the network aware of the content it is carrying. New
naming schemes and name resolution architectures have been
proposed to facilitate name-based routing. A comprehensive
survey of the ICN architectures can be found in [11]. More
recently, DMap [12] has proposed a global name resolution
service for supporting mobility and efficient content delivery
in the Internet. DMap assigns a globally unique flat identifier
(GUID) to each content. A content’s GUID is hashed to
obtain a list of IP addresses and the contents original location
is indexed at those addresses. These indices are updated
whenever the content is relocated. However, every network
entity in DMap is required to have a global knowledge of the
IP prefix advertisements from all the autonomous systems to
successfully locate the index locations of a content.

Dynamic DNS (DDNS) provides a way to access and
assign names to user devices residing even in private networks.
This requires the users to configure their home gateways to
enable port forwarding. However, the DDNS service providers
do not collaborate. They work in isolation. Their client soft-
ware and communication protocols are incompatible. On the
contrary, pWeb provides a global platform for the organizations
to collaborate. pWeb enables organizations to provide naming
service to their clients. It assigns global names to user devices
that can work with or without the legacy DNS. And finally,
pWeb supports device mobility similar to DMap. However
unlike DMap, pWeb does not require the participants to know
about global IP prefix advertisements.

III. PWEB ARCHITECTURE

A. Design Goals

In this section we define the goals that we want to achieve
with the pWeb architecture.

First and foremost, we want to assign each end user device
in the Internet a globally unique name that is compatible with
DNS. DNS compatibility is essential for seamless integration
with existing Web technology. Globally unique names will
allow device identification, and it will be easier to access a
device for various Web services.

Second, the name resolution time should be comparable to
that of DNS. This is a challenging goal for two reasons: a) the
sheer volume of end-user devices and b) the high frequency
of change in name to IP address binding.

Third, we want to make the devices, and the services hosted
in them searchable. The search process should have a low
response time and low resource usage. The search interface
should use standard Web technology.

Fourth, there should be a clear separation between the
components in pWeb. This is essential to allow independent
evolution and control. We envision pWeb as a global plat-
form for distributed Web services. Hence, we expect that the
components in pWeb will be administered and deployed by
independent entities.

B. Overview

In this section we present a simple architecture that can
achieve the goals explained in Section III-A. Figure 1 presents
the functional components in this architecture. There are three
layers in the architecture: service layer, resolution layer and
index layer. Below we explain the components in each layer
and their functionalities:

1) Service layer: This layer consists of the users and
their devices. Users are virtual entities with authentication
credentials. A user may register one or more devices under
his credential. Web services, like content sharing, streaming,
synchronization etc., are distributed in the end-user devices.
Each client device runs a pWeb client software that makes the
services in the device available over the HTTP protocol.

DNS

Search
engine

Home Agent
Network

In
de

x
R

es
ol

ut
io

n
Se

rv
ic

e

DNS gateway

Home Agent

Online device

Offline device

User

Device group

Legend

keyword

name

name

IP

Web client

Fig. 1. Functional components in pWeb

2) Resolution layer: This layer consists of a network of sta-
ble servers, called Home Agents (HA). HAs will be deployed
by different administrative entities. A user has to register with
a HA. For each registered user, a HA maintains some meta-
information, like the user’s credentials, the devices registered
by that user and the services running in each device. HAs
collaborate with each other using a Distributed Hash Table
(DHT). This DHT indexes only the HA names. In addition
to the DHT links, each HA maintains shortcut links to other
HAs. The HA DHT ensures that a HA can find any other HA
in two to three overlay hops. This layer also contains DNS
gateways that translate DNS requests to DHT lookup queries
and sends the results back. DNS gateways ensure compatibility
and integration with legacy DNS.

3) Index layer: Searching devices and services using meta-
information (e.g., user name, descriptive keywords, location
etc.) is an essential functionality in pWeb. Due to the shear
volume of devices and services it will not be feasible to
index the device and service names within the HA network
in a distributed fashion. Rather, the HA network indexes only
the HA names using a Distributed Hash Table (DHT). Each
HA keeps track of the users, devices and services registered
in that HA. We use a dedicated search engine for enabling
meta-information search in pWeb. Similar to the Web search
engines, our search engine can be deployed in compute clusters
(dataceters). The search engine crawls the HA network for
available devices and services. It generates a global index to
respond to user queries.

IV. PWEB FUNCTIONAL SPECIFICATION

A. Naming

In the pWeb platform, we have to name users, their devices
and the services running in those devices. The naming system
in pWeb should have the following properties: 1) human
readable: the names should be human friendly so that users

can easily remember the names and search by names; 2)
DNS compatible: to allow seamless integration with Web tech-
nology, pWeb names should be inter-operable with DNS; 3)
performance: the name resolution system should be efficient in
network usage, low in response time, scalable in the volume of
names and name resolution requests, and effective in handling
the update frequency of name to IP address binding.

We have used a hierarchical naming scheme to achieve the
aforementioned requirements. An abstract name in pWeb and
an example are give below:

Abstract: device.user.ha-name.dns-gw/service
Example: nexus.bob.uw.pwebproject.net/camera

This example identifies the camera service in a device named
nexus that is registered under user bob. In addition, user
bob and his devices are registered to the HA named uw.
Here, pwebproject.net refers to a DNS gateway and
can be replaced with any other DNS gateway URL. We
have developed a portal for user and device registration. This
portal can be accessed through pWeb project’s homepage at
http://pwebproject.net.

It is worth noting that the name uniqueness is ensured at
each level of the naming hierarchy. The HA overlay ensures
that each HA gets a unique name. At the next level, each HA
ensures that the registered users get unique names. Finally, it
is the responsibility of a user to assign unique names to his/her
devices. A user cannot assign the same name to multiple
devices.

B. Interfaces

The HA nodes provide a RESTful interface for
interacting with external entities. The RESTful API
has a common format of http://ha-name:port/
?method=method-name¶meter-list. We have
defined standard interfaces for communication between HA
and other components in pWeb. In Table I we highlight the
interfaces that will be mostly used by pWeb app developers.

1) Interface between HA and client: This interface provides
users with registration and authentication services. New users
can register with the system through our registration portal,
which in turn uses this interface to update a HA. This interface
also allows users to register their devices. The IP Updater
Module in the client software uses this interface to update
the HA whenever the IP address of the client device changes.
This feature is necessary to support device mobility and allows
access to devices behind NAT boxes.

2) Interface between HA and crawler: The device crawler
periodically polls the HAs using this interface to retrieve
the registered devices and content meta-data. The HA also
provides the crawler with a list of neighbour HAs through the
REST API calls. This list enables the crawler to start a set of
seed HAs and proceed in a breadth-first manner.

C. Indexing and Discovery

The sequence diagram in Figure 2 presents the main
processes in pWeb, namely, registration, crawling, searching
and name resolution. In order to use pWeb, a user, say Bob,
must register himself and his device, say nexus.bob, to a HA

REST API Method Name Description
HA Interface with Client s/w and Registration portal

register_user Register a new user at an HA

authenticate_user Authenticate a user at an HA against his pro-
vided credentials

get_all_user_device Return all the registered devices of a given user

update_user_device_ip Update the IP address and listening port number
of a given device for a given user

update_service_info Update content meta data stored in a given
device of a given user

HA Interface with Crawler
get_all_device Return the list of all devices along with their

owner information stored at an HA

get_service_meta Return the list of service meta-data stored at an
HA

TABLE I. SUMMARY OF HOME AGENT INTERFACES

Hosting
device

Bob’s
HA

nexus.bob uw

Any
HA

DNS
gateway

Search
engine

pwebproject.net

Internet
user g

register

update IP &
meta-data

get device /
service info.

index

Search by
keyword

content URL

DNS lookup
DHT lookup

DHT lookup

Device IP Device IP

Service
access

Registration Crawling

Searching Name
resolution

Fig. 2. Registration, crawling and discovery processes in pWeb

of his choice,and install the client software to his device.
The client software updates the device’s IP and information
on the hosted services to Bob’s HA, i.e., uw. The search
engine, on the other hand, crawls the HA-network for available
devices and services, and indexes them. A user can discover the
device and service URLs (e.g., nexus.bob.uw.pwebproject.net)
by searching the crawler’s index. The user’s browser will
resolve this URL transparently as follows: the DNS request
will be forwarded to the DNS gateway (i.e., pwebproject.net);
the DNS gateway will forward the request to Bob’s HA (i.e.,
uw) using the HA overlay; Bob’s HA will respond with the
most recent IP address of the hosting device (i.e., nexus.bob),
and; finally, the IP address will be forwarded to the requesting
browser or application, and it will directly access the desired
service in Bob’s device.

V. DETAILED DESIGN AND IMPLEMENTATION

A. Home Agents

1) Design: Figure 3 shows the architecture of a single
Home Agent (HA) node. The HA nodes work together to form
a Distributed Hash Table (DHT). Any DHT scheme can be
used to realize the HA network. We have used Plexus [13] for
our implementation. As in all DHTs, each HA node maintains
a list of HAs (logical neighbours) for forwarding any name
look up or registration request. The DHT formed by the HA
nodes index the HA names in the overlay network. A HA has
the following functional components:

a) Messaging Interface: A HA provides a messaging
interface for communicating with external entities, i.e., the

Local Storage

M
es

sa
gi

ng
 In

te
rf

ac
e Pl

ex
us

 T
C

P
M

es
sa

gi
ng

A

PI

H
TT

P
R

ES
Tf

ul
 A

PI

Message Processor

HTTP Message
Processor

(Mongoose Web Server)

Plexus TCP Message
Processor

Incoming
Message
Queue

Message
Dispatcher

Thread

Outgoing
Message
Queue

Link Cache Index

Local Name DB

Worker Threads

Crawler

Device

Home
Agent Processing Pending

Queue

Plexus Storage
API

Fo
rw

ar
di

ng

Th
re

ad
s

Fig. 3. Home agent architecture

crawlers in search engine, DNS gateway, end device and other
HAs. The HA messaging interface is comprised of two parts:
(i) a TCP messaging API for communicating with other HAs
and the DNS gateway, and (ii) a HTTP RESTful messaging
API for communicating with the end devices and the crawlers.
We preferred raw TCP messaging over HTTP for HA-DNS
gateway and HA-HA communication in order to improve name
lookup performance.

b) Message Queues: A HA node also maintains a
number of message queues delegated to different purposes. All
incoming messages received through the messaging interface
are placed into an incoming message queue and wait for
dispatching. After a message is dispatched from the incoming
message queue and processed, it is placed into an outgoing
message queue if it requires further forwarding. In our imple-
mentation, we also have an optional queue for the log entries
from different threads (not shown in the figure, since it is
not part of the HA design). Log entries in this queue can be
remotely monitored for tracking multiple HAs from a central
location.

c) Dispatcher, Forwarding and Worker Threads: A
message dispatcher thread acts as a switch and assigns a
worker thread to an incoming message for further processing.
A worker thread contains a message processing logic, which
takes decisions for the assigned messages. There are separate
types of worker threads based on the type of the received mes-
sage (HTTP message and TCP message). The worker thread
decides whether the message needs to be further forwarded or
the request can be locally served. Messages requiring further
forwarding are placed in an outgoing message queue and a
number of forwarding threads dispatch these messages through
the HA’s messaging interface.

d) Local Storage: The local storage system contains (i)
the DHT routing table, i.e., a list of HAs (logical neighbours)
for forwarding a query (ii) a cache for storing non-neighbour
HAs. This cache is used in addition to the regular routing
table for making forwarding decisions; (ii) a local index where
HA name-to-IP address information is indexed using Plexus;
and (iii) a name database, which contains metadata on the
registered users, devices and services.

c

m

c
c

Crawlers &
Manager

Solr
Cloud

Web
front-end

HA
Network

Fig. 4. Search engine architecture

2) Implementation: One of our implementation goals was
to make the HA software as lightweight and platform-
independent as possible. With this goal in mind we have
developed the HA software in C/C++. The POSIX thread
library (pthread) has been used for multi-threading and syn-
chronization purposes. For storage purposes we used SQLite
3, a lightweight database engine. The remainder of this section
contains more details regarding the implementation of different
HA components.

As described earlier in Section III, a HA’s messaging
interface comprises a TCP messaging API and a RESTful
HTTP messaging API. We have used mongoose [14], a
lightweight open source web server written in C, to implement
the RESTful API. For the TCP messaging interface we have
used the POSIX socket interface. We have defined custom
messages for the communication between the HAs and with
the DNS gateway. These messages are converted to binary data
streams before sending through the TCP socket as payload.
These custom messages have the necessary serialization and
de-serialization methods for converting to and from binary
data.

In our implementation, the incoming and outgoing message
queues have been implemented using STL’s queue data
structure. The message queues are shared between different
threads. We have ensured synchronization by using pthread
library’s read_write_lock primitives. pthread library
has also been used for implementing the threads used in HAs.

The routing table and link caches have been implemented
using the STL map data structure with necessary synchro-
nization primitives. We need a relational database for efficient
management of user, device and service information. However,
the popular relational database engines like MySQL or Oracle
use a lot of resources, which contradicts our goal of keeping
the HAs lightweight. We therefore chose SQLite, a self-
contained, serverless, zero-configuration, transactional SQL
database engine [15]. SQLite has been interfaced with our HA
process through the libsqlite3-dev library.

B. Search Engine

1) Design: The search engine allows Internet users to
discover pWeb users, devices, and services by building a
searchable database containing metadata for all devices and
services in the pWeb network. The Web front-end constructs
a URL in the search results that can be used to access content
directly from end devices. From the user’s perspective, the
URL works like a regular HTTP URL, except that the request

for the IP address of the host of the resource is received by
a DNS Gateway and forwarded to the HA overlay to retrieve
the device’s last known IP address. The search interface is one
of the main methods that users locate services in pWeb.

The search engine architecture is shown in Figure 4. We
describe the major components in the following:

a) Crawlers and Manager: The pWeb Crawler process
is responsible for polling HAs in order to discover new and
updated devices, services, and content in the pWeb network.
It uses the HA’s RESTful interface to retrieve information
about the HA itself, its neighbours, registered devices, and
new services and content. The crawler uses the list of the HA’s
neighbours in order to discover all the HAs in the HA overlay.

A single Crawler process can be run in a standalone mode
or any number of Crawler processes, coordinated by a Manager
process, or can run in parallel in order to scale additional orders
of magnitude. If, and only if, a polled HA returns information
about one or more updated devices, the Crawler process will
post an update to an Apache Solr server. Solr, to be discussed
further in the next section, is an enterprise-search server and
database. In pWeb, Solr is used to store and search among
user, device, and service metadata.

b) Solr Cloud: Solr is an open-source, enterprise-search
database that is used by many large companies including AOL,
eBay and Netflix, to power the search features on their public
websites. Like the Crawlers, a single Apache Solr instance
can be run in a standalone configuration, but Solr can also be
scaled to handle large databases using replication and sharding.
A distributed configuration of Solr is known as a Solr Cloud.

Solr provides an HTTP RESTful interface that is the
primary way for external applications to interact with Solr.
This interface is used for inserting data into the database,
searching for data, and management functions. The Crawler
uses this interface to insert user, device and service metadata
into the database. The public search interface is implemented
as a Django Web application that also uses this interface. The
search interface will be discussed further in the next section.

c) Web Front-End: One or more Web servers running
the Django Web framework provide a Web front-end that can
be used by human users in order to search for devices in the
pWeb network based on the published metadata.

When a user issues a query from the search interface, the
view layer of the Django Web application receives the request
and issues a query to Solr to perform a search and retrieve
the results. Solr returns the results as Python data structures
which are passed to the Template layer that renders them as
HTML to be displayed to the user. The Web interface does not
store any context or state information, so its scalability is not
a concern. Any number of Web front-ends can be deployed in
parallel and the domain name system, a load balancer, or both
can be used to evenly share the load between them.

2) Implementation: The pWeb Crawler and Manager pro-
cesses have been programmed from scratch with scalability
and performance in mind. They exclusively use asynchronous
I/O for network communication through the Boost Asio li-
brary [16], which is a cross platform C++ library for network
and low-level I/O programming and has been proposed for

DNS Protocol
Handler

(TCP & UDP)

Home Agent
Proxy Load

Balancer

DNS
Query
Object

Outgoing
Message

Proxy

DNS
Query
Object

Home Agent
Incoming
Message

Proxy

DNS
Query
Object

Query Map

DNS
Query
Object

Fig. 5. Components in the DNS Gateway

inclusion in the next version of the official C++ standard.
The Asio library uses the most efficient asynchronous I/O API
offered by the operating system.

The asynchronous I/O approach ensures the software does
not limit scalability and takes full advantage of modern hard-
ware with multicore processors and fast network connections.
In the asynchronous I/O approach, all network operations such
as establishing a connection or performing a read or write op-
eration, are non-blocking. This decouples the threading model
from network operations, enabling the application designer to
use as many or as few threads as they see fit.

C. DNS Gateway

1) Design: The primary purpose of the DNS Gateway is
to translate DNS query messages to name lookup messages
in the HA protocol and back again. The main conceptual
components of the DNS Gateway are shown in Figure 5. A
HA Outgoing Message Proxy object is created in the DNS
Gateway upon startup for each configured HA. A single HA
Incoming Message proxy is responsible for receiving messages
from all HAs. The main components of the DNS Gateway
are explained below in terms of a query flowing through the
system. The gateway also contains logging and instrumentation
subsystems, which are omitted for clarity.

When a DNS message arrives at the DNS Gateway, the
DNS Protocol Handler receives the message and verifies that
the gateway can process the message. If the query is valid, the
DNS Protocol handler constructs a query object to represent
the query and passes the query object to the HA Proxy Load
Balancer, which passes it to one of the HA Outgoing Message
Proxy objects. Once the outgoing message proxy receives the
DNS query object, it constructs an HA protocol message for
the query. This message will contain the device name to be
looked up as well as the DNS query sequence number. It then
instructs the DNS query object to start an internal timeout
timer, stores the query object in a shared map using the
sequence number as a key, and sends the HA message.

When a reply message is received from the HA, the HA
Incoming Message Proxy extracts the name lookup result and
DNS query sequence number from the HA protocol message
and retrieves the DNS query object from the shared map. It
stores the name lookup result in the DNS query object and
instructs it to send a reply back to the client. If the DNS query
timeout timer expires before a reply message is received from
the HA, the DNS query object will then remove itself from
the map and send an error code back to the client.

Light-weight
pWeb Server

Home-Agent
Interface

pWeb
App

Other
Apps

Device H/W
Interface

Web client Home Agent

HTTP HTTP

Auth.
DB

End user
device

Fig. 6. Components in the pWeb client software

2) Implementation: The implementation of the DNS Gate-
way parallels that of the Crawler and Manager. All network
operations are asynchronous and implemented using the Boost
Asio library. The DNS Gateway uses one application thread
by default, but provides a configuration parameter to increase
the number of threads, with an option to match the number of
application threads to hardware cores. Matching the number of
application threads to the number of hardware cores ensures
that Crawler and Manager processes can take advantage of all
available processing power if necessary on the host machine. A
single pWeb Crawler process can monitor tens of thousands of
HAs with short polling periods on modest hardware, as shown
in Section VI.

D. Client Software

1) Design: The client software is an integral part of the
pWeb platform. It runs at an end user device and facilitates
seamless integration of the existing third-party apps (e.g.,
remote access to IP cameras, NAS, etc.) and new apps to be
developed for the pWeb platform. It uses the HA’s RESTful
API to publish the pWeb apps (i.e., services) running in end-
devices. Major components of the client software are depicted
in Figure 6 and described as follows: (a) The pWeb server is a
lightweight HTTP server that works as a translator between
HTTP messages and native function calls. It works as a
relay between the hosted apps and Web clients (e.g., a web
browser or another pWeb app). Third-party apps hook into
the pWeb server as plugins. The pWeb server also provides
API for the apps to access device hardware resources and HA
interface; (b) The HA interface encapsulates the REST API
between HA and pWeb client; (c) The authentication database
(Auth. DB) stores user credentials. The pWeb server uses
this module to check the authenticity of an incoming request,
while the HA interface retrieves user credentials from this
module for device registration and IP update processes; (d) The
Device H/W Interface is an extendable library that abstracts the
hardware resources from app developers, and; (e) The client
software contains a built-in pWeb App that provides a GUI for
configuring different components in the client software.

2) Implementation: Instead of developing the client soft-
ware from scratch, we extended the Jetty webserver for Win-
dows and its Android counterpart, iJetty. We developed the
pWeb app as a plugin to the extended iJetty server. The pWeb
app provides the essential user interface needed to configure
the client software and register devices and services. We
developed a video app on the client software, which allows
a user to record video using his device’s camera. The user can
then choose to share the videos as public or private. Another

user can locate the shared videos using the pWeb search portal
and stream the videos directly from the end user device.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results showing
the performance of the proposed name resolution infrastructure
and device crawler. The name resolution infrastructure is the
basis of all future pWeb services, while the search engine
builds the database for discovering content and services in
pWeb. Therefore, we focus on the performance of these
two components rather than showing the performance of any
service deployed over pWeb. We begin by describing the
experimental setup in Section VI-A, followed by the evalu-
ation scenarios in Section VI-B. The results are discussed in
Section VI-C.

A. Experimental Setup

We experimented separately with the name resolution in-
frastructure and the device crawler. We had two experimental
setups when experimenting with the name resolution infras-
tructure. In the first setup, we deployed the HA nodes and
DNS Gateways in 25 PlanetLab nodes [17] spread across the
globe. Figure 7 shows the geographical placement of the HAs
and DNS Gateways. We setup a local BIND DNS server in one
of our local server machines in Canada, which is responsible
for resolving names with the suffix pwebproject.net. It
is configured to be geo-aware, i.e., it forwards a DNS query to
its geographically nearest DNS gateway. If a name is searched
multiple times, the DNS query will reach the DNS server
in Canada only once, since the geographically nearest DNS
gateway will be cached at the client. Therefore, the local DNS
server does not become a bottleneck node in the system. The
name-resolving clients were placed in 30 PlanetLab nodes
spread across the world. They use the Domain Information
Groper (dig) command line tool to query for names and
measure the name look-up latencies.

In the second setup we performed micro-benchmarking of a
HA node to test its scalability. To perform this experiment, we
ran one instance of an HA process on a machine with a quad-
core Intel Xeon CPU running at 2.13 GHz and 12 GB of RAM.
In another machine, we ran a micro-benchmarking tool that can
generate a specified load on the HA. The HA process used for
this experiment is multi-threaded, using different threads for
listening to the incoming requests, processing messages, and
sending out replies. We then tested the HA’s scalability in this
setup with various loads.

For the name data set, we collected anonymized DNS traces
from our campus network at the University of Waterloo. We
used this trace to generate both the set of names and the
queries. In our experiment we used 2.5×105 unique names and
generated a Zipf distributed query sequence from this name
data set. For the Zipf distribution we used the parameters
from [12] since it represents a realistic model of content
request in the Internet. The query sequence was divided among
the 30 PlanetLab clients and each client performed 5 × 105

queries in parallel.

We then performed a micro-benchmark of the Crawler run
in standalone mode on a server with the same specifications as

Fig. 7. Geographic Placement of Home Agent and DNS Gateway

the HA micro-benchmark. The Crawler ran on a large simu-
lated HA network that consisted of simulated HA output which
was statically generated offline and then served from a RAM
disk by an Nginx server. Delays were introduced by a modified
Nginx echo module to simulate the HAs being geographically
distributed. Nginx is an open-source, high-performance HTTP
server1 and the echo module enabled a number of features that
are useful for software testing, including the server performing
an asynchronous sleep for a specified duration before returning
the HTTP response.

The simulated HA network was constructed with the as-
sumption that the Crawler would be located in Canada and
have access to HAs distributed around the globe. To construct
the simulated HA output, we first obtained the P2PSim King
dataset2 which contains estimated round-trip times between
pairs of hosts on the Internet. Since this data was from June
2004, which was the most recend that we could find, we
obtained the Maxmind GeoIP database also from June 2004
and translated all IP address pairs to countries. We were able
to obtain estimated average latencies from Canada to 116 other
countries.

Next, we modified the third-party Nginx echo module to
sleep for durations based on the distribution of these latencies.
Each request to a simulated Home Agent includes that HA’s
country code in the HTTP GET query string. The modified
echo module uses this country code to index into a table to
retrieve the estimated latency from Canada to that country, then
performs an asynchronous sleep for that duration, effectively
delaying the HTTP response.

We wrote a Python script to generate the simulated ouput
for each HA. The script contains the number of mobile phone
subscribers per country in 2012, which we obtained from the
World Bank Open Data website3. The script takes a parameter
the percentage of all mobile phone subscribers assumed to be
using pWeb. It generates the simulated HA output such that
each country has at least one HA and there are at most 50,000
users per HA. The number of simulated HAs generated for
each country is proportional to the number of mobile phone
subscribers in that country.

B. Experiment Scenarios

We evaluate the performance of the name resolution infras-
tructure in the following scenarios:

1http://nginx.org
2http://pdos.csail.mit.edu/p2psim/kingdata/
3http://data.worldbank.org/indicator/IT.CEL.SETS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

C
D

F

Latency (ms)

HA with caching
HA without caching

DNS

(a) Name Look up Efficiency of Home Agent

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

C
D

F

Latency (ms)

With GeoDNS
Without GeoDNS

(b) Impact of GeoDNS on Name Resolution

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

R
es

po
ns

e
T

im
e

(m
s)

Requests per Second

(c) Home Agent Scalability

Fig. 8. Performance of Name Resolution Infrastructure

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5000 10000 15000 20000 25000 30000
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

C
P

U
 U

til
iz

at
io

n
(%

)

M
em

or
y

U
sa

ge
 (

M
iB

)

Network Size (Number of Home Agents)

CPU
Memory

(a) Impact of Network Size on Crawler Resource Re-
quirement

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 2 4 6 8 10 12 14

N
et

w
or

k
S

iz
e

(n
um

be
r o

f H
om

e
A

ge
nt

s)

Polling Interval (seconds)

1 thread

2 threads

3 threads

4 threads

(b) Impact of Polling Interval on Supported Network
Size

Fig. 9. Performance of the Crawler

Home Agent performance: In this scenario, we experi-
mented with the HA network only, i.e., without the DNS
gateway and local DNS servers. We published the name dataset
within the HA network and the HA nodes performed name
lookup amongst themselves. The goal of this experiment was
to show: (a) the name lookup performance of Plexus protocol
running in the HA network; and (b) the impact of link caching
within the HA network.

Effect of geo-awareness: In this scenario, we showed
the impact of having geo-awareness in name resolution. To
illustrate this, we performed two separate experiments with
geo-awareness enabled and disabled, respectively. When geo-
awareness is disabled, the local DNS server is configured to
forward a name resolution query to a random DNS gateway
in PlanetLab.

Home Agent scalability: In the final scenario, we per-
formed micro-benchmarking evaluation of the HA’s scalability.
We developed a micro-benchmarking tool that can generate
different loads on the HA (in terms of requests per second),
which measures the HA’s response time under different load
conditions.

The Crawler’s performance is evaluated in the following
scenarios:

Crawler scalability: In this scenario, we measure the
resources consumed by a single Crawler process to crawl a
HA network of a given size in order to gain insight into how
well the design and implementation scales.

Effect of polling interval: In this scenario, we measure
the effect of increasing the polling interval by measuring the

maximum size of the Home Agent network a Crawler can
crawl without falling behind.

C. Results

1) Home Agent Network Performance: Figure 8(a) com-
pares the performance of the HA network with that of DNS.
We collected DNS traces at our university for two months
and computed the latency values for each query leaving our
network to the Internet. As shown in figure 8(a), we plotted
the CDFs for lookup latency in case of DNS, HA network
with caching, and without caching. As can be seen from the
figure, the DNS performs better within the 80th-percentile
than the HA network without caching, but after that the
DNS’s performance degrades and the HA network performs
significantly better, even without caching. With caching, the
HA network always performs better than DNS, except for the
very low latency lookups within 10ms. This phenomena is due
to the presence of cached DNS records in the client cache as
well as the the presence of closeby DNS servers (and caches)
provided by the ISP serving our university.

2) Effect of Geo-Awareness: Figure 8(b) shows the impact
of geo-awareness on the end-to-end name resolution latency
of our system. It is evident from the figure that there is
about 50ms reduction (about 28%) in the median name lookup
latency with the geo-awareness in place, although the lines
converge near the tail of the distribution. The high latency
values are due to queue build up in the HA process and the
geo-awareness does not have much impact on the name lookup
latency during this queue build up. The effects of queue build
up are discussed more in detail in the following section.

3) Home Agent Scalability: Figure 8(c) shows the HA’s
response time under different load conditions. We varied the
load on the HA from 100 requests per second up to 1000
requests per second in 100 requests per second intervals. The
plot reports the average response time of the HA along with
the 5th and 95th percentile values. As the results indicate,
the HA can deliver a ≤ 100ms response time for up to 400
requests per second. Response times increase rapidly beyond
this threshold and can be as slow as 600ms on average for
the largest load in our experiment. We investigated the cause
for this performance decrease, and discovered that beyond the
400 requests per second threshold, the internal queues of the
HA process build up very quickly and drain very slowly. One
solution to this problem is to increase the number of threads
handling the message processing and forwarding. However, in
our experiment the HA process had a number of threads equal
to the number of cores in the machine, and the performance
improvement is quite negligible as the number of threads
exceeds the number of processor cores on the machine.

4) Crawler Scalability: Figure 9(a) illustrates the resources
required to run the Crawler in standalone mode with two
threads on the simulated HA network with 5% to 25% of users
assumed to be using pWeb, 5, 684 to 28, 172 HAs respectively,
for a fixed polling frequency of 10 seconds. When 5% of
mobile phone subscribers are assumed to be using pWeb,
a single Crawler process can poll all 5, 684 HAs every 10
seconds, and requires approximately 45% of 1 CPU core and
1, 529 MiB of memory. Alternatively, when 25% of users are
assumed to be using pWeb, a single Crawler process can poll
all 28,172 HAs every 10 seconds and requires approximately
148% of 1 CPU core and 6, 320 MiB of memory. As can be
seen from the figure, both the CPU time and memory required
scale linearly with the HA network size.

5) Effect of Polling Interval: Figure 9(b) shows the max-
imum size of the HA network a single Crawler process can
crawl before it starts to fall behind for polling intervals of 2
to 14 seconds. For this experiment, falling behind is defined
as the first instance that at least two HAs were not polled
within the polling interval. The figure shows the maximum
network size that a single poller can support increases linearly
with an increasing polling interval and increasing number
of threads. On average, increasing the polling interval by 2
seconds increases the maximum HA network size that the
Crawler can support by 30%. Increasing the number of threads
from 1 to 2 increases the network size that the Crawler can
support by 90%, from 2 to 3 by 50%, and from 3 to 4 by
20%. This experiment shows that a single Crawler process
can monitor up to approximately 70, 000 HAs when no device
or content updates are being processed by the system. When
device updates are present, this value is halved due to the
second HTTP request that the Crawler must make in order to
submit the device updates to the search database. When device
and content updates are present in the system, this value will
be substantially less. We plan to evaluate the scalability of the
Crawler with content updates in the near future.

VII. CONCLUSION

In this paper, we addressed a basic question “How to
seamlessly access end devices using the Web technology?.

This question has become more significant with users hav-
ing multiple and more powerful devices than before. Our
investigation revealed that a standalone app or software is
not sufficient to address this question. A collaborative open
platform is essential for naming and indexing the end devices
for seamless integration with the Web. We have developed
pWeb to provide this functionality. So far we have deployed the
pWeb platform in PlanetLab and in the University of Waterloo
compute cluster. We have also developed client software for
Windows and Android platforms. Experimental results from
our current deployment have proved the effectiveness of the
proposed architecture. Our current focus is to open pWeb for
public use. Specifically, we are improving the HA software
for better security and broader hardware support. We are
generalizing the pWeb client software for supporting wider
range of third party apps and more operating systems. Any
organization can become a part of the pWeb naming system
by deploying our HA software. App developers will be able to
deliver more innovative apps by building on the pWeb client
software.

REFERENCES

[1] C. man Au Yeung, I. Liccardi, K. Lu, O. Seneviratne, and T. Berners-
lee, “Decentralization: The future of online social networking,” in W3C
Workshop on the Future of Social Networking Position Papers, 2009.

[2] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “Peerson: P2P
social networking: early experiences and insights,” in SNS, 2009.

[3] L. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving
online social network leveraging on real-life trust,” Communications
Magazine, IEEE, vol. 47, no. 12, 2009.

[4] R. Sharma and A. Datta, “Supernova: Super-peers based architecture
for decentralized online social networks,” in COMSNETS, 2012.

[5] A. Datta, S. Buchegger, L.-H. Vu, K. Rzadca, and T. Strufe, Handbook
of Social Network Technologies and Applications. Springer, 2010, ch.
Decentralized Online Social Networks.

[6] R. Cheng, W. Scott, A. Krishnamurthy, and T. E. Anderson, “FreeDOM:
a new baseline for the web,” in HotNets, 2012.

[7] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan, WebRTC
1.0: Real-time Communication Between Browsers. Working Draft,
W3C, September 2013.

[8] I. Hickson, Web SQL Database. Working Group Note, W3C, Nov.
’13.

[9] N. Mehta, J. Sicking, E. Graff, A. Popescu, J. Orlow, and J. Bell,
Indexed Database API. Candidate Recommendation, W3C, July 2013.

[10] S. Kosta, V. C. Perta, J. Stefa, P. Hui, and A. Mei, “Clone2Clone (C2C):
Peer-to-peer networking of smartphones on the cloud,” in HotCloud,
2013.

[11] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and B. Mathieu,
“A survey of naming and routing in information-centric networks,” IEEE
Communications Magazine, vol. 50, no. 12, 2012.

[12] T. Vu, A. Baid, Y. Zhang, T. D. Nguyen, J. Fukuyama, R. P. Martin,
and D. Raychaudhuri, “Dmap: A shared hosting scheme for dynamic
identifier to locator mappings in the global internet,” in ICDCS, 2012.

[13] R. Ahmed and R. Boutaba, “Plexus: A scalable peer-to-peer protocol
enabling efficient subset search,” in IEEE/ACM TON, vol. 17, 2009.

[14] “Mongoose.” [Online]. Available: https://code.google.com/p/mongoose

[15] “SQLite.” [Online]. Available: http://www.sqlite.org

[16] C. Kohlhoff, “Boost.asio - 1.53,”
http://www.boost.org/doc/libs/1 53 0/doc/html/boost asio.html, 2012.

[17] A. C. Bavier, M. Bowman, B. N. Chun, D. E. Culler, S. Karlin, S. Muir,
L. L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak, “Operating
systems support for planetary-scale network services.” in NSDI, 2004.

