
µNF: A Disaggregated Packet Processing Architecture

Shihabur Rahman Chowdhury, Anthony, Haibo Bian, Tim Bai, and Raouf Boutaba
David R. Cheriton School of Computer Science, University of Waterloo

{sr2chowdhury | a3anthon | haibo.bian | tim.bai | rboutaba}@uwaterloo.ca

Abstract—Network Function Virtualization (NFV) promises
to reduce the capital and operational expenditure for network
operators by moving packet processing from purpose-built hard-
ware to software running on commodity servers. However, the
state-of-the-art in NFV is merely replacing monolithic hardware
with monolithic Virtual Network Functions (VNFs), i.e., software
that realizes different network functions. This is a good first
step towards deploying NFV, however, common functionality is
repeatedly implemented in monolithic VNFs. Repeated execution
of such redundant functionality is particularly common when
VNFs are chained to realize Service Function Chains (SFCs) and
results in wasted infrastructure resources. This stresses the need
for re-architecting the NFV ecosystem, through modular VNF
design and flexible service composition. From this perspective,
we propose MicroNF (µNF in short), a disaggregated packet
processing architecture facilitating the deployment of VNFs and
SFCs using reusable and independently deployable components.
Experimental results show that compared to monolithic VNF
based SFCs, µNF-based ones achieve the same throughput by
using less CPU cycles per packet on average.

I. INTRODUCTION

Network operators ubiquitously deploy hardware middle-
boxes (e.g., NATs, Firewalls, WAN Optimizers etc.) to realize
different network services [1]. Despite being an integral part
of modern enterprise and telecommunication networks, mid-
dleboxes are proprietary, have little or no programmability
and vertically integrate packet processing software with the
hardware. Such closed and inflexible ecosystem explains the
high capital and operational expenditures incurred by network
operators. This led to the Network Function Virtualization
(NFV) movement initiated in 2012 [2]. NFV proposes to
disaggregate the tightly coupled Network Functions (NFs)
and hardware middleboxes and deploy the NFs as Virtual
Network Functions (VNFs) on commodity servers. Through
this disaggregation, NFV promises to reduce CAPEX by
consolidating multiple NFs on the same hardware, and reduce
OPEX by enabling on-demand flexible service provisioning.

Significant effort has been dedicated to NFV research over
the years [3], including for: resource provisioning, middle-
box outsourcing, management platforms, fault-tolerance, state
management, traffic steering through VNFs, and programming
models and runtime systems. A common trait observed in these
works is the one-to-one substitution of monolithic hardware
middleboxes by monolithic VNF counterparts. Indeed, this is
a logical first step for NFV. However, as demonstrated in [4],
monolithic VNFs can lead to wasted infrastructure resources.

A fundamental problem demonstrated with monolithic VNF
implementation is that many packet processing tasks, e.g.,
packet I/O, parsing, classification, TCP session reconstruction

etc., are repeated across wide range of enterprise NFs [4]. This
has several negative consequences. First, redundant develop-
ment and optimization effort on these common tasks across
different VNFs. Second, monolithic VNFs restrict how many
packet processing tasks can be consolidated on the same hard-
ware. For instance, a Firewall and an IDS, both perform packet
classification [5]. Since the VNFs are monolithic, we cannot
consolidate packet classification as a single function, allocate
just enough resources for processing the cumulative traffic of
the Firewall and the IDS, and deploy the classifier as a single
entity. Third, monolithic VNFs impose coarse-grained resource
allocation and scaling. This non-exhaustive list of issues poses
a barrier in achieving the agility promised by NFV. In this
regard we set out to answer the following question: What is an
appropriate software architecture for implementing VNFs that
will enable better function consolidation on the same hardware
and finer-grained resource allocation while maintaining the
same level of performance as state-of-the-art approaches?

There is a substantial body of research on modular packet
processing software [6]–[9]. However, in most cases the end-
product is still a monolithic software, which typically executes
in a run-to-completion mode, i.e., applies all the functionality
of an NF or even an SFC on a batch of packets read
from the Network Interface Card (NIC) before they exit the
system. This model is usually easier to scale, however, it still
suffers from the coarse-grained resource allocation imposed
by monolithic software. In this paper, we aim at building
VNFs from simple building blocks by taking advantage of
the commonality of packet processing tasks. To this end, we
propose µNF, a disaggregated packet processing architecture.
µNF takes the disaggregation of middleboxes one step further
and decompose VNFs into independently deployable, loosely-
coupled, lightweight packet processors, that we call Micro
Network Functions (µNFs for short). VNFs or SFCs are then
realized by composing a packet processing pipeline from these
independently deployable µNFs. Such decomposition will
allow finer grained resources allocation, independent scaling of
µNFs thus increased flexibility, and independent development
and maintenance of packet processing components. µNF is
built on the thesis of CoMb [4] that consolidating common
packet processing tasks from multiple NFs can lead to bet-
ter resource utilization. However, CoMb’s focus was not to
address the implementation challenges for realizing such a
system (e.g., software architecture, performance optimizations
etc.), which is the key contribution of this paper. Specifically,
we have the following contributions:

• An architecture for composing VNFs and SFCs from
reusable, lightweight, independently deployable and978-1-5386-9376-6/19/$31.00 c©2019 IEEE

loosely-coupled components that we call µNFs (§IV).
• Implementation of architecture components including the
µNFs and the communication primitives between µNF
(§VI).

• Optimizations for improving the performance of µNFs
on multi-socket NUMA machines, and packet processing
latency (§V).

• Evaluation of our system through testbed experiments
(§VII). A key finding is that an SFC composed from µNFs
can achieve the same throughput using less CPU cycles
per packet on average compared to that composed from
monolithic VNFs.

II. MOTIVATION

Edge
Firewall

Monitoring
Function

Application
Firewall

(a) Example SFC adapted from [10]

Edge
Firewall:

Rx From
NIC

Parse
Headers

L3/L4
Classification Tx to NIC

Drop
Packet

Allow

Deny

App.
Firewall:

Rx From
NIC

Parse
Headers

L7
Classification

Validate
URL

Drop
Packet

HTTP

Other
Traffic

Tx To
NIC

Unsafe

Safe

Monitoring
Function:

Rx From
NIC

Parse
Headers

L7
Classification

Tx To
NIC

Count
Packets

with URL X

HTTP

Other Traffic

(b) Functional decomposition of NFs from Fig. 1(a)

Fig. 1. Common packet processing tasks across NFs

Our motivation for developing a disaggregated packet pro-
cessing architecture stems from the observation that many
packet processing tasks, e.g., I/O, packet classification, pay-
load inspection etc. are repeated when VNFs are chained in an
SFC. We demonstrate this using an SFC in Fig. 1(a), similar to
the ones typically found in enterprise Data Centers (DCs) [10].
This SFC consists of the following VNFs:

• Edge Firewall: Allows or denies packets based on layer
2-4 header signature.

• Monitoring Function: Consists of different counters such
as a packet size distribution counter, a counter for packets
containing certain URLs etc.

• Application Firewall: Filters packets based on Layer 7
information, e.g., block HTTP requests with embedded
SQL injection attacks (similar to [11]).

We can decompose these VNFs into smaller packet pro-
cessing tasks as shown in Fig. 1(b). Clearly, tasks such as
packet I/O, parsing, classifying HTTP packets etc. are repeated
in these VNFs. In a monolithic implementation, developers
will separately implement and optimize these tasks in the
respective VNFs. Among other consequences, the benefits of
optimization in one implementation cannot be leveraged into
others because of the tight coupling between the tasks.

We also perform an experimental study to demonstrate pos-
sible performance implications of repeating common packet

TABLE I
RESULTS FROM MOTIVATIONAL EXPERIMENT

Click Element CPU Cycles Element Weight
Saved in config-ii in config-i

FromDevice 71.9% 0.22%
ToDevice 67.1% 0.25%

CheckIPHeader 65.1% 0.44%
HttpClassifier 48.28% 47.8%

Overall 29.5% –

processing tasks in the SFC from Fig. 1(a) by comparing
between the following two deployment configurations: (i)
Click [7] based monolithic VNFs chained using virtual Eth-
ernet (veth) pairs (Fig. 2(a)); and (ii) a single Click con-
figuration implementing the functionality of the same SFC
from configuration-i, while removing the repeated common
elements (Fig. 2(b)). For both cases we play the same traffic
(HTTP packet trace generated from access log for a moderate
size web-service (≈15K hits/month)) and measure the average
CPU cycles/packet required by each type of Click element.
We instrumented all the elements to measure the CPU cycles
spent in processing each packet. We also implemented our
own Click elements (HttpClassifier, CountUrl, and
ValidateUrl) as needed. Our objective is to measure the
wasted CPU cycles for repeating common tasks across an SFC.
Note that this study complements that of the one presented
in [4] by demonstrating the impact on an SFC rather than
considering single middlebox applications.

Click Configuration: Edge Firewall

FromDev
(eth0) CheckIPHeader Classifier

ToDev
(veth00)

Drop

Allow

Deny

Click Configuration: Application Firewall

FromDev
(veth11)

Validate
Url

ToDev
(eth1)

Unsafe

Click Configuration: Monitoring Function

FromDev
(veth01)

HttpClassifier
ToDev

(veth10)CountUrl

HTTP
Traffic

Other Traffic

Filter

CheckIPHeader

CheckIPHeader HttpClassifier
H

T
T

P
T

ra
ff

i
c

Drop

Safe

eth0 -
From

Traffic
Gen.

eth1 -
To

Traffic
Gen.

Physical Machine

Other Traffic

(a) Monolithic VNFs chained with veth pairs

Optimized Click configuration with the same functionality

FromDev
(eth0)

CheckIPHeader Classifier

Drop

Allow

Deny

ValidateUrl

ToDev
(eth1)

U
ns

af
e

HttpClassifer CountUrlHTTP Traffic

Other Traffic

Filter

Safe

eth0 -
From

Traffic
Gen.

eth1 -
To

Traffic
Gen.

Physical Machine

(b) One single optimized click configuration

Fig. 2. Motivational Experiment Scenarios
We present the savings in CPU cycles obtained from

removing repeated elements in the optimized configuration,
i.e., configuration-(ii) in Table I. We observed a per element
savings of up to ≈70%. However, as shown in Table I, not all
elements contribute equally to packet processing, hence, the
overall gain at the end is 29.5%, which is still significant.

This result further motivates re-architecting VNFs by ex-
ploiting the commonality in packet processing in a way to
achieve better resource usage. To this end, we argue in favor
of adopting a microservice-like architecture [12] for building
VNFs and SFCs. We propose to disaggregate VNFs into in-
dependently deployable packet processors, that we call µNFs.
VNFs or SFCs can then be realized by orchestrating a packet
processing pipeline composed from the µNFs. With this, one
can think of applying optimizations such as consolidating
multiple instances of a common packet processing function
into a single instance for better CPU utilization. We will
experimentally demonstrate CPU utilization gains from using
a µNF-based SFC over that composed from monolithic VNFs
(i.e., configuration-(i)) in §VII-C.

III. DESIGN GOALS AND CHOICES

Our objective is to re-architect the VNFs by exploiting
their overlapping functionality enabling finer-grained resource
allocation and achieving better resource utilization. To achieve
these objectives we start with the following design goals:

Reusability Frequently appearing packet processing func-
tions should be developed once and shared across VNFs.

Loose-coupling: Packet processing functions should not
be tightly coupled, so that they can be deployed and scaled
independently, allowing fine-grained resource allocation.

Transparency: Implementation of a packet processing func-
tion should not be affected by their communication pattern
(e.g., one-to-one, one-to-many etc.).

Lightweight communication primitives: Communication
between packet processing elements should not incur signifi-
cant overhead hurting the overall performance.

The first goal can be achieved by dividing large packet
processing software into smaller packet processing tasks or
functionality. Then to achieve the rest of the goals we have
the following two design alternatives [13]:

Run-to-completion: Packet processors are implemented as
a set of identical threads or processes, each implementing the
entire packet processing logic (i.e., an NF or even an SFC).

Pipelining: Packet processors are implemented by com-
posing a pipeline of heterogeneous threads/processes, each
performing a specific packet processing task.

The state-of-the-art modular VNF designs (e.g., ClickOS [6]
and NetBricks [8]) have adopted a run to completion model,
where packets are passed between different functions in the
same address space and processed in a single thread/process.
When more processing capacity is required, the whole VNF
(or SFC) instance is scaled out and traffic is split between
the instances (e.g., using NIC features such as Receiver Side
Scaling). One limitation of this model is that it is hard to right
size resource allocation to individual components because of
the tight coupling between them. In contrast, pipelining mode
satisfies more of our design goals. Individual components can
be allocated their own resource, independently deployed and
scaled (loose-coupling), and it is easier to decouple how an el-
ement processes a packet from the underlying communication
pattern between them (transparency).

μNF - 1

…

μNF Orchestrator

Southbound API
(e.g., DeployμNF)

Northbound API
(e.g., DeployChain)

μNF - 2

μNF - k

O
rc

he
st

ra
ti

on

A
ge

nt

Rx
Service

Tx
Service

NIC(s)Mgmt.
NIC

Physical Server

Fig. 3. System Components

IV. SYSTEM DESCRIPTION

A. Assumptions

We assume that the network operator owning the infrastruc-
ture has control over the VNFs that are being deployed. These
VNFs can be deployed at the operator central offices converted
into edge data centers [14]. When SFCs are deployed inside
these edge data centers their constituent VNFs are typically in
the same layer 2 domain.

We do not consider Virtual Machines (VMs) as the choice
of deployment for individual µNFs since that would add a
significant overhead for µNF to µNF communication [8].
Moreover, we also do not require separate OSs and kernel
features for deploying the µNFs, which is typically provided
by VMs. Rather we choose using either processes or containers
for µNF deployment. At this point we leave the choice of
using processes or containers to the network operator since
our evaluation results demonstrated similar performance.

We assume that the µNF descriptions (e.g., what type
of operation the µNF performs on what part of the packet
header/payload) and template for composing VNFs from µNFs
will be provided by the VNF providers. The SFC request will
come from the network operator. Currently, we use JSON
format for SFC specification. However, we do not restrict
ourselves as to what can be used for specifying SFCs. We
plan to support standards such as YANG [15].

Finally, we assume that the µNF developers will provide
configuration generator for each µNF. This will generate
the necessary configuration for a µNF (e.g., the types of
communication primitives to create), when presented with a
µNF type and its connectivity with neighboring µNFs.

B. System Architecture: Birds Eye View

A high level view of our system is presented in Fig. 3. It
comprises the following components: a µNF orchestrator, per
physical server orchestration agent, µNFs, and Rx/Tx services
for reading packets from/to the NICs. The northbound API
facilitates SFC life-cycle management and monitoring, and
allows network operators to interact with the system. The µNF
orchestrator is responsible for making global decisions such as

Ctrl/Mgmt API
i_port_0

i_port_1

. . .
i_port_kIn

gr
es

s
Po

rt
s

e_port_0

e_port_1

...

e_port_m

Egress Ports

PacketProcessor
iport to eport
mapping table

Fig. 4. µNF Architecture

µNF placement across physical servers to realize SFCs, make
µNF migration decisions, etc.

The orchestration agent acts as the local orchestration
endpoint for a given machine. A southbound API between
the global orchestrator and orchestration agents facilitate their
communication. For example, the µNF orchestrator can use
the southbound API for requesting local orchestration agents
to allocate resources for µNFs, deploying µNFs with proper
configuration and create the communication primitives for
µNF to µNF communication.

The smallest deployable units in the system are the µNFs.
µNFs usually perform a specific packet processing task and
are independently deployable loosely-coupled entities. As de-
scribed in §III one of our design goals is to keep the µNFs
simple and keep the communication pattern between µNFs
transparent from how they process the packets.

Finally, we have two special µNFs, namely the Rx and
Tx services, responsible for reading packets from and writ-
ing packets to the NIC, respectively. These two services
collectively form a lightweight software data path for the
µNFs. By isolating these two services from the µNFs we
have the flexibility to adjust I/O batch sizes according to
the consumption/production rate of the µNFs. Moreover, such
separation allows us to make the operations on hardware
transparent to other packet processing µNFs.

C. System Components

1) µNF Orchestrator: The µNF orchestrator is responsible
for realizing an SFC by orchestrating a packet processing
pipeline consisting of µNFs across multiple machines. Net-
work operators can interact with the orchestrator through a
north-bound API. The orchestrator is also responsible for
global management decisions such as handling machine fail-
ures, making scaling decision, etc.

2) µNF Orchestration Agent: µNF orchestration agent is
the local orchestration endpoint on a physical machine. It
has a northbound API for the µNF orchestrator to act on it.
The agent is responsible for performing local actions such as
deploying µNFs, creating communication primitives to enable
inter µNF communication on the same machine, etc.

3) µNFs: A µNF is the unit of packet processing in
the system as well as the unit of deployment and resource
allocation. The architecture of a µNF is shown in Fig. 4. It
contains a number of IngressPorts, a number of EgressPort and
a PacketProcessor. The IngressPorts and EgressPorts provide
methods to pull packets from and push packets to the previous
and the next µNF in the packet processing pipeline, respec-
tively. When µNFs from different VNFs are consolidated,

an IngressPort to EgressPort mapping table helps in routing
packets to different branches of the pipeline.

The aforementioned ports are of abstract type and can have
different implementations. One of our design goals is to keep
the packet processing logic of µNFs oblivious to µNF to µNF
communication pattern. The port abstraction simplifies µNFs’
design and implementation, and keep them loosely coupled
with each other. For instance, a specific implementation of
EgressPort can perform load balancing by distributing packets
to multiple next-stage µNFs in a round-robin fashion. From
a µNF’s point-of-view, such load balanced distribution of
packets to the next stage µNFs remains transparent. In §VI
we describe the implementation of different ports in detail.

4) Rx Service: Rx service is the interface between host
NIC(s) and the µNFs. Rx service keeps the hardware specific
configurations (e.g., number of NICs, number of Rx queues
etc.) and operations (e.g., flow classification in either hardware
or software based on NIC capabilities) transparent to the µNFs.
The Rx service can be thought of as a lightweight data path
(similar to [16] except that complex data path functions are
implemented as independent µNFs in our system).

5) Tx Service: Tx service sits between the µNFs and the
host NIC. Common Tx specific tasks such as tagging packets
of the same SFC, rewriting destination MAC address with next
hop MAC address, writing packets to different NIC Tx queues,
etc. are consolidated inside the Tx service.

D. SFC Deployment

As discussed earlier, the µNF orchestrator is the entry point
for the network operators to deploy an SFC composed of
µNFs. One of our goals is to ensure that from the network
operators point-of-view the SFC request does not look differ-
ent from what they are used to seeing, i.e., they should not
be required to specify µNF specific configurations. It is up to
the orchestrator to determine the optimal composition of µNFs
that offers the semantics of the user requested SFC.

1) Inputs: In what follows, we describe the inputs to the
orchestrator in a bottom up fashion:
µNF Descriptor: A µNF descriptor defines different at-

tributes of a µNF. Currently, we support the following at-
tributes: statefulness of the µNF and types of action (e.g., No
Operation (NOP), ReadOnly, or ReadWrite) a µNF performs
on the packet headers at different protocol layers. For instance,
the following is a descriptor for a layer 3-4 classifier:

PacketProcessorClass: "TCPIPClassifier"
Stateful: "Yes"
L2Header: "NOP"
L3Header: "ReadOnly"

VNF templates: A VNF in our system is represented as
a packet processing graph composed of the µNFs. A VNF
template consists of the nodes of the processing graph (i.e.,
the µNFs) and the links representing the order of packet
processing between µNFs. The links can be labeled with
the output of the source µNF for that link. Labels act as a
filter, i.e., only packets producing results equal to the label
are forwarded along that link. Examples of VNFs and VNF
templates are presented in Fig. 1(b).

SFC: An SFC request is a directed graph, where the nodes
are the constituent VNFs and a directed link between two
nodes represents the order that traffic should follow. Links
can have labels in an SFC indicating VNF specific output.
µNF descriptors provided by VNF providers may include more
or less information than what we have described. The lesser
information they contain, the lesser constraints we may have
in placing µNFs.

2) Sequence of Operations for SFC Deployment: The or-
chestrator combines the constituent VNF templates of an
SFC, removes redundant µNFs and builds a µNF forwarding
graph with the same semantics as the SFC request. The
graph construction phase can take µNF specific meta-data
into account to perform optimizations such as consolidating
multiple µNF instances of the same type into one.

After the orchestrator builds an optimized µNF processing
graph and determines the placement of µNFs, it then requests
agents on the selected machines to deploy their parts of
the graph. The orchestrator provides the agents with the
configuration parameters of each µNF in the subgraph. Upon
receiving the µNF processing subgraph and the configurations,
the agent first allocates the necessary resources, creates the
communication primitives, and deploys and connects the µNFs
using the instantiated communication primitives.

V. OPTIMIZATIONS

A. Pipelined Cache Pre-fetching

One issue that might arise from our design of µNF is when
using multiple processors in NUMA configuration. In such
configuration, each processor socket has its local memory bank
and the access time to local and remote memory banks are not
uniform. Processing packets on a NUMA zone (i.e., socket)
other than the one where the NIC is attached has performance
implications due to remote memory invocation. To circumvent
this problem, we perform a pipelined cache pre-fetching inside
every µNF. It works as follows. Before processing a batch of
packets, a µNF first pre-fetches a cache-line from the first k
packets in the batch. Then it proceeds to process the batch.
While packet i from the batch is being processed, a cache-
line from packet i + k is pre-fetched into the cache. In this
way, when a packet is being processed, the first level cache
is very likely to be warm with a cache-line worth data from
that packet (which contains the header fields). Thus potentially
increasing the first level cache hit rate and masking the remote
memory access latencies to some extent. We experimentally
evaluate the impact of this optimization in §VII-B2.

B. Parallel execution of µNFs

In a pipelined packet processing model, the packet pro-
cessing elements typically operate on a batch of packets in
a sequential manner. This is often unavoidable since one
µNF only processes the set of packets as determined by
the previous stage µNF. For instance, in Fig. 1(b), the L7
classifier µNF in the Application Firewall determines the set of
packets to be processed by the URL Validator µNF. However,
there are scenarios where sequential packet processing can

be avoided. For example, in the monitoring function from
Fig. 1(b), the counting function performs a read-only operation
on the packets. Therefore, if another counting function was
part of the Monitoring function, these two could be safely
executed in parallel on the same set of packets.

We parallelize the execution of consecutive µNFs from the
µNF processing graph that are placed on the same machine.
Parallelization is performed based on the type of operation
they perform on the packet header (specified in µNF descrip-
tor). When consecutive µNFs perform read-only operations
on the packet header, or operate on disjoint regions of the
header, or do not modify the packet stream (e.g., not dropping
packets), only then we parallelize their execution and assign
them distinct CPU cores on the same NUMA zone. One issue
with parallel executions is to ensure synchronization after the
parallel processing stage, i.e., a µNF β that is just after the
parallel processing state, should be able to start processing a
packet only if the packet has been processed by all the µNFs
in the parallel processing stage. Such synchrony is achieved
through special IngressPort and EgressPort implementations
(details in §VI-D). These ports embed a counter as packet
meta-data before parallel execution begins. At the parallel
execution stage, each µNF atomically increases the counter
after its processing is complete. At µNF β, the IngressPort
ensures that only packets with appropriate counter value are
passed on to β’s PacketProcessor. Moving the synchrony
mechanism into ports thus keeps the µNF design simple.

VI. IMPLEMENTATION

We have implemented a prototype of the proposed system
using C++ (agent and µNFs) and Python (orchestrator). Our
current focus is more on developing the µNFs and their
communication primitives. Therefore, our current orchestrator
is limited in functionality and acts more as a convenience
mechanism for testing. We use Intel DPDK (http://dpdk.org/)
for packet I/O and hugetlbfs [17] for sharing memory
between µNFs. In the remainder of this section we describe
the implementation details of each of the system components.

A. Agent
Agents are implemented in C++ and run as primary DPDK

processes. During initialization, an agent pre-allocates memory
buffers for the NIC, and exposes an RPC-based control API for
the orchestrator. The orchestrator can use this API to deploy
part of a µNF processing graph on a machine. When such a
request is received by an agent, it deploys the µNFs according
to the orchestrator specified configuration and creates the
necessary communication primitives (details in §VI-D).

B. µNF
µNFs are implemented to run as stand-alone secondary

DPDK processes. When required, µNFs obtain pre-allocated
objects from a memory pool shared with the agent. Memory
sharing between µNFs and between a µNF and the agent is
enabled by hugetlbfs. The hugetlbfs is mounted on a directory
accessible to both the µNFs and the agent, and contains virtual
to physical memory mapping of the shared memory regions.

μNFA μNFB

PPPort (Egress)
Shared Ring

PPPort (Ingress)

Main Memory
pkta pktb pktc

(a) Point-to-Point Port

μNFA

μNFB

μNFC

M
ain M

em
ory

pkta
pktb

BranchEgressPort PPPort (Ingress)
Parallel μNFs

(b) Branched Egress Port
Fig. 5. Port Implementations

C. Rx and Tx Services

In our design, packet I/O is handled by Rx and Tx services
in order to hide hardware specifics from the other µNFs. In our
prototype implementation, the Rx service runs as a separate
thread inside the agent and is pinned to a physical CPU core
on the same socket where the NIC’s PCIe bus is attached. It
receives packets from a NIC queue in batches and implements
a classifier that dispatches the packets to the appropriate µNFs.
Currently, the classifier is based on matching the following 5-
tuple flow signature: (srcIP, dstIP, ip-proto, src-port, dst-port).

The Tx service abstracts the NIC Tx queues and implements
common functions frequently required by the µNFs. For
example, in a multi-node deployment scenario, when a µNF
processing graph is deployed across multiple machines, the
Tx service encapsulates the packets belonging to a µNF graph
destined to another machine in a custom layer 2 tunnel with
appropriate tag and destination MAC addresses.

D. Port

As discussed earlier, a port provides packet I/O abstraction
for µNFs and decouples the implementation of a specific
communication pattern from a µNF’s packet processing logic.
This design choice helps to keep the µNF implementation
focused only on the packet processing part. We have two
broad classes of ports, IngressPort for receiving packets
from and EgressPort for sending packets to µNF(s). If not
stated otherwise, ports provide a zero-copy packet exchange
mechanism by exchanging the packet addresses instead of
full copies of the packets. IngressPort and EgressPort present
the following interfaces to the µNFs while hiding underlying
implementation details: (i) pull based IngressPort::RxBurst,
which populates an array with a burst of packet addresses; (ii)
EgressPort::TxBurst pushes a burst of packets to the next µNF.
Currently, we have the following specific implementations of
IngressPort and EgressPort that allow different communication
patterns between µNFs.

1) NIC I/O Port: A NIC I/O port abstracts the rx/tx queues
in the hardware NIC. It allows µNFs to directly read from or
write to the NIC. We have leveraged the NIC specific DPDK
poll mode drivers (PMDs) for implementing ingress and egress
versions of NIC I/O Port. The DPDK PMDs bypass the OS
kernel and allow zero copy packet I/O from the NIC.

2) Point-to-Point Port: A point-to-point port allows a µNF
to push packets to or pull packets from exactly one other
µNF. We have implemented this port using a circular queue
(Fig. 5(a)). The ingress version of the port (PPIngressPort)
pulls a batch of packet addresses from a circular queue and

the egress version (PPEgressPort) pushes packet addresses for
a batch of packets to the queue. When a µNF’s PPIngressPort
and another µNF’s PPEgressPort share the same circular
queue, they can exchange packets with each other. The circular
queue in our implementation is an instance of rte_ring data
structure (a lock-less multi-producer multi-consumer circular
queue) from DPDK ring library.

3) BranchEgressPort: This port connects a µNF to multiple
µNFs that are processing packets in parallel. For instance,
in Fig. 5(b), µNFB and µNFC are executing in parallel. To
realize this execution model, µNFA can be made aware of this
configuration and pushes packet addresses to both of the next
state µNFs. µNFA will also need to embed the necessary meta-
data in packets to mark the completion of µNFB and µNFC .
This violates our design principle of loose coupling between
µNFs, and therefore, we developed BranchEgressPort to trans-
parently handle this type of branching. A BranchEgressPort
contains multiple circular queues, each corresponding to one
µNF in the next stage. Each of the circular queues can
be shared with a PPIngressPort to create a communication
channel. For example, one of the circular queues of µNFA’s
BranchEgressPort is essentially the underlying circular queue
of µNFB’s PPIngressPort. A BranchEgressPort also initializes
and embeds a counter inside each packet’s meta-data area,
which is used to mark the completion of packet processing by
all parallel µNFs.

4) MarkerEgressPort: A MarkerEgressPort works in con-
junction with a BranchEgressPort. It is the typical EgressPort
of a µNF part of a parallel processing group. This port atom-
ically increases the embedded counter in the packet before
putting the packet into a shared circular queue.

5) SyncIngressPort: A SyncIngressPort connects a set of
parallel µNFs to a single µNF that is potentially modifying
packets. This port is also an abstraction over a shared circular
queue. The queue is shared with other MarkerEgressPorts in
the parallel processing group. SyncIngressPort ensures that
any packet that is pulled out has been processed by all the
parallel µNFs. This synchronization is done by checking the
counter embedded inside every packet by a BranchEgressPort.
SyncIngressPort pulls a packet only if the counter value equals
the number of µNFs in the parallel processing stage.

VII. PERFORMANCE EVALUATION

A. Experiment Setup

1) Hardware Configuration: Our testbed consists of two
machines connected back-to-back without any switch. One
of them hosts the traffic generator, while the other hosts
the µNFs. Each machine is equipped with 2×6-core Intel
Xeon E5-2620 v2 2.1Ghz CPU (hyper-threading disabled),
32GB memory (distributed evenly between two sockets), and
a DPDK compatible Intel 10G Ethernet adapter.

2) Software Environment: We used DPDK v17.05 on
Ubuntu 16.04LTS (kernel version 4.10.0-42-generic). We dis-
abled Address Space Layout Randomization kernel feature
to ensure a consistent hugepage mapping across the µNFs.
We also allocated a total of 4GB hugepages (evenly divided

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

64 96 128 256 512 768 1024 1500
 0

 2

 4

 6

 8

 10

 12

Th
ro

ug
hp

ut
 (M

pp
s)

Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (Bytes)

Throughput (Mpps) Throughput (Gbps)

14
.8

7

10
.7

7

8.
45

4.
53

2.
35

1.
59

1.
2

0.
82

9.
99 10 10 10 10 10 10 10

Fig. 6. Baseline Performance

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20 25 30 35 40 45 50

 50

 100

 150

 200

 250

Th
ro

ug
hp

ut
 (M

pp
s)

Th
ro

ug
hp

ut
 Im

pr
ov

en
t

O
ve

r N
o

Pr
e-

fe
tc

hi
ng

 (%
)

Prefetch Size (% of Batch Size)

Throughput Improvement (%)
Throughput (Mpps)

Fig. 7. Impact of Pipelined Cache Pre-fetching

between sockets). Additionally, we configured the machines
with the following performance improvement features:

• We isolated all CPU cores except core 0 on socket 0 from
the kernel scheduler. µNF processes and agent threads
were pinned to these isolated CPUs.

• CPU scaling governor was set to performance.
3) Prototype µNFs: We developed the following µNFs and

used them for different evaluation scenarios:
MacSwapper: swaps the source and destination MAC ad-

dress of each packet.
CheckIPHeader: computes and checks the correctness of

IP checksum of each packet.
L3L4Filter: filters packets based on Layer 3-4 signature.
HttpClassifier: determines if a packet is carrying HTTP

traffic by checking the payload.
ValidateUrl: Performs a regular expression matching on

URL in HTTP header to detect malformed URLs.
CountUrl: Counts the number of packets in a batch that

contains a certain URL in its payload.
4) Traffic Generation: We used pktgen-dpdk (http://git.

dpdk.org/apps/pktgen-dpdk/), and Moongen [18] for through-
put and latency measurements, respectively. We determine the
physical limits of our setup by modifying the agent to receive
batches of packets and echo them back (single thread pinned
on a CPU core). We observed line rate throughput from this
setup for all packet sizes, hence, there are no bottlenecks
present in the hardware or configuration. For latency measure-
ments, we set the packet rate to 90% of maximum sustainable
rate for that particular deployment scenario.

B. Microbenchmarks

1) Baseline Performance of µNF: We first establish the
baseline performance that can be achieved by disaggregating
larger VNFs into µNFs. We pinned the agent’s Rx thread to a
CPU core and run a very simple µNF (MacSwapper) pinned

 0

 50

 100

 150

 200

0 100 200 300 400 500 600 700

M
ea

n
Pr

oc
es

si
ng

 L
at

en
cy

 (µ
s)

Per µNF Complexity (CPU cycles/packet)

Parallel Sequential

Fig. 8. Impact of Parallelism in Processing Graph

to a different CPU core in the same NUMA zone. We vary
packet size from 64 to 1500 bytes and report the throughput
in Fig. 6. Throughput reaches line rate for smallest packet size
on 10G NIC. We also deployed the same µNF inside a Docker
container and performed the same experiment to observe any
potential impact of containerization. Throughput results for
containerized µNF are very similar to those presented in Fig. 6,
and are hence not presented.

2) Impact of Pipelined Cache Pre-fetching: We intend to
utilize all available CPU cores on a machine for deploying
the µNFs. However, in a NUMA system with multiple CPU
sockets, processing packets on a NUMA zone other than the
one where the packet was received can cause performance
degradation due to remote memory access overhead [19]. In
this experiment, we evaluate the impact of cache-prefetching
optimization from §V-B when packets are processed by µNFs
on different NUMA nodes.

We receive packets on NUMA zone 0 and process them
through a chain of two MacSwapper µNFs deployed on
separate cores at NUMA zone 1. We measure throughput of
this chain (for smallest size packets) while varying the number
of pipelined pre-fetched packets up to 50% of packet batch
size (batch size is set to 64). The results are shown in Fig. 7.
With pre-fetching disabled throughput drops to ≈30% of line
rate. However, with as little as ≈20% packets pre-fetched to
cache in a pipeline (8 out of 64 packets in a batch), throughput
improves by more than ≈3× and goes back to the line rate
for smallest packet size.

3) Impact of Parallelism in µNF Processing Graph:
Intuitively, parallel execution of µNFs in the processing
graph is expected to reduce the processing latency for the
packets through µNF processing graph. However, overheads
are associated with parallel executions because of atomically
increasing a counter on each packet during branching and syn-
chronizing as described in §V-B. Depending on how fast a µNF
is processing packets, we may observe different impacts of
parallelism. To evaluate the effect of parallelism for different
packet processing costs, we add an artificial busy loop after
processing each packet in MacSwapper µNF. We create a
pipeline from four of these µNFs connected linearly for the
sequential case. For the parallel case, we create a two-way
branching after the first µNF (using BranchEgressPort) and
join the branches at the last µNF (using SyncIngressPort). We
vary the per packet processing cost from 100 to 700 CPU
cycles. We measure packet processing latency of the sequential

 0
 3
 6
 9

 12
 15
 18

 0 1 2 3 4 5 6 7 8

La
te

nc
y

(µ
s)

Processing Path Length

(a) Latency as a Function of
Chain Length

 0
 50

 100
 150
 200
 250
 300

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00

La
te

nc
y

(µ
s)

µNF Complexity (Cycles/pkt)

Len. = 4
Len. = 5
Len. = 6

(b) Latency as a Function of
Packet Processing Cost

Fig. 9. Impact of µNF Processing Path Length

RxService CheckIPHeader Drop

Allow

Deny

ValidateUrl

TxService
Unsafe

HttpClassifer CountUrlHTTP Traffic

Other Traffic

L3L4Filter

Safe

Fig. 10. µNF Realization of the SFC from Fig. 2(a)

and parallel configurations using Moongen. Results of this
experiment (mean latency with 5th and 95th percentile error
bars) are shown in Fig. 8. When a µNF’s processing cost is low
(e.g., less than 100 cycles/packet), the gains from parallelism
are rather marginal compared to the sequential case (less than
10% improvement in latency). The gains become more evident
when µNFs’ packet processing cost increases and we see a
good potential for improving latency there (more than 20%
for µNFs with 700 cycles/packet processing cost).

4) Impact of µNF Processing Graph Diameter: We create
µNF chains of different lengths and measure packet processing
latency along the pipeline using Moongen. The objective is to
observe if packets start queuing up in any stage of the process-
ing pipeline or not. We have an experiment setup similar to
the scenario in §VII-B3. We first measure latency with varying
chain lengths and without introducing any additional packet
processing complexity in our MacSwapper µNF. In this case,
we observe a linear increase in mean latency (Fig. 9(a)). Then
we introduce additional busy loops to emulate CPU cycles
spent for packet processing (similar to §VII-B3) and measure
latency for different lengths of µNF packet processing path
(varied from 4 to 6). As we observe from Fig. 9(b), latency
increases linearly with µNF complexity as well as with µNF
processing path length. Therefore, no buffering issues were
encountered along the pipeline.

C. Performance of µNF-based SFC

We have developed a set of µNFs (described in §VII-A3)
for realizing realistic VNFs and SFCs. We use these µNFs to
deploy the SFC used for the motivational experiment in §II,
i.e., Edge Firewall → Monitor → Application Firewall. The
resulting µNF processing graph is shown in Fig. 10. We
implemented each individual µNF as close as possible to their
Click counterpart. We played the same traffic trace used in §II.
Results in Table II show the relative savings in average CPU

TABLE II
CPU CYCLES SAVED PER-PACKET ON AVERAGE

Click Element/µNF CPU Cycles Element Weight
Saved in µNF in config-i

CheckIPHeader 27.8% 0.44%
HttpClassifier 28.9% 47.8%

Overall 16.8% –

cycles per packet when using µNF processing graph over
monolithic VNFs (i.e., configuration-(i) from §II). To be fair,
we did not compare packet I/O from NIC since it is funda-
mentally different in µNF and in Click. We counted the cycles
spent in reading to/from ring-based shared memory since that
is an added overhead in this disaggregated architecture. We
also benchmarked the deployment from Fig. 10 by generating
packets with the packet size set to 200 bytes (average packet
size reported in data center networks [20]). The deployment
was able to reach a throughput of 2.08Mpps or 3.67Gbps.

VIII. RELATED WORKS

Modular Packet Processing The development of modular
packet processing software has a long history that dates back
to the late 90s. Click [7], one of the most influential works
in this area proposed to build monolithic packet processing
software using reusable packet processing components called
elements. Click’s focus was more on the programmability
than performance. Over the years, Click influenced a sig-
nificant body of subsequent research on building modular
yet high performance packet processing platforms that em-
ployed different optimization techniques of their own (e.g.,
NIC offloading, I/O batching, kernel bypass, FPGA accel-
eration etc.) to improve packet processing performance and
add flexibility to VNF composition [6], [8], [9], [21]–[23].
However, these proposals are centered around the assumption
that a middlebox is a monolithic software. More recently,
Slick [24] and OpenBox [5] proposed different approaches
to achieve the similar goal of building packet processing
from independently deployable components. Slick focuses
more on the programming model for middlebox composition
while OpenBox goes one step further and decouples data and
control planes of VNFs. In contrast to µNF, OpenBox focuses
more on the protocol design between VNF control and data
planes and not on the design of a modular data plane. A
chaining mechanism for lightweight VNFs has been proposed
in [25], which inserts per-VM SFCs between a VM and a
virtual switch for providing QoS, security, and monitoring
services. In contrast, our focus is not on per-VM services,
rather, on a general software architecture for realizing VNFs
and SFCs from lightweight, independently deployable, and
loosely-coupled packet processing components. An elaborate
discussion on the challenges associated with realizing such
microservice-based VNFs and SFCs can be found in [26].

Industry Efforts in Microservice-based VNFs There has
been some movement in the industry for re-designing large
VNFs using microservice architecture. As part of the CORD
project [14], a number of VNFs have been decomposed

into having separate control and data planes that are loosely
coupled and can be independently scaled. Another example is
the Clearwater IP Multimedia System [27] re-architected using
microservices design principle. However, the independently
deployable components themselves are rather complex and can
be further decomposed into more manageable sizes.

Middlebox Functionality Consolidation CoMb [4] is one
of the early works to experimentally motivate the consolidation
of common functionality into separate services and share them
across VNFs. However, CoMb’s main focus was not to address
the implementation issues related to realizing such a system,
rather demonstrate the advantages of consolidating multiple
NFs on commodity hardware as opposed to using purpose-built
hardware middleboxes. In contrast, E2 [28] proposed to con-
solidate management tasks such as resource allocation, fault-
tolerance, monitoring, and auto-scaling into a single frame-
work. More recently, Microboxes proposed to consolidate TCP
protocol processing functions such as bytestream reconstruc-
tion and endpoint termination of multiple middleboxes [29].
Consolidation has the advantage of reducing redundant de-
velopment efforts in implementing and optimizing common
tasks. In this paper, we focus on the software architecture and
performance optimizations for realizing a disaggregated packet
processing platform to consolidate packet processing tasks and
thus reduce the development efforts.

IX. CONCLUSION

We proposed µNF, a system for building VNFs and SFCs
from independently deployable, loosely-coupled components
enabling finer-grained resource allocation. Our design goal is
to keep the µNFs simple and develop the necessary primi-
tives to transparently enable different communication patterns
between them. We demonstrated the effectiveness of our
system through a DPDK based prototype implementation and
experimental evaluation. The individual techniques used for
implementing and optimizing the system are not entirely new
(e.g., batched I/O, zero-copy I/O, pre-fetching etc.). However,
the bigger picture here is to demonstrate that disaggregating
complex VNFs using the proposed software architecture com-
bined with the individual techniques is indeed a viable and
competitive solution for composing VNFs and SFCs. This is
further supported by our experimental evaluation showing that
the combined engineering effort enables finer-grained resource
allocation and scaling while attaining comparable performance
compared to a monolithic implementations.

ACKNOWLEDGMENT

This work was supported in part by the NSERC CREATE
for Network Softwarization Program.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” in Proc. of ACM SIGCOMM’12, pp. 13–24.

[2] “Network Functions Virtualisation – Introductory White Paper,” White
paper, Oct 2012, accessed: Dec 02, 2018. [Online]. Available:
https://portal.etsi.org/nfv/nfv white paper.pdf

[3] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2016.

[4] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Proc of
USENIX NSDI, 2012, pp. 24–24.

[5] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A software-defined
framework for developing, deploying, and managing network functions,”
in Proc. of ACM SIGCOMM, 2016, pp. 511–524.

[6] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda et al., “Clickos
and the art of network function virtualization,” in Proc. of USENIX
NSDI, 2014, pp. 459–473.

[7] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” in Proc. of ACM SOSP’99, pp. 217–231.

[8] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of nfv,” in Proc. of USENIX OSDI, 2016.

[9] M. Gallo and R. Laufer, “Clicknf: a modular stack for custom network
functions,” in Proc. of USENIX ATC, 2018.

[10] Surendra, M. Tufail, S. Majee, C. Captari, and S. Homma, “Service
function chaining use cases in data centers,” Working Draft, IETF
Secretariat, Internet-Draft draft-ietf-sfc-dc-use-cases-06, February 2017.

[11] “Barracuda web application firewall,” accessed: Dec 02, 2018. [Online].
Available: https://www.barracuda.com/products/webapplicationfirewall

[12] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi
et al., “Microservices: yesterday, today, and tomorrow,” in Present and
Ulterior Software Engineering. Springer, 2017, pp. 195–216.

[13] C. Dumitrescu, “Design patterns for packet processing applications on
multi-core intel architecture processors.” White Paper, December 2008.

[14] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier et al.,
“Central office re-architected as a data center,” IEEE Communications
Magazine, vol. 54, no. 10, pp. 96–101, 2016.

[15] R. Penno, P. Quinn, D. Zhou, and J. Li, “Yang data model for service
function chaining,” Working Draft, IETF Secretariat, Internet-Draft
draft-penno-sfc-yang-15, June 2016.

[16] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“Softnic: A software nic to augment hardware,” Dept. EECS, Univ.
California, Berkeley, USA, Tech. Rep. UCB/EECS-2015-155, 2015.

[17] “hugetlbfs documentation,” accessed: Dec 02, 2018. [Online]. Available:
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

[18] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proc. of ACM
IMC, 2015, pp. 275–287.

[19] C. Sieber, R. Durner, M. Ehm, W. Kellerer, and P. Sharma, “Towards
optimal adaptation of nfv packet processing to modern cpu memory
architectures,” in Proc. of ACM CAN, 2017, pp. 7–12.

[20] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. of ACM SIGCOMM,
2015, pp. 123–137.

[21] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet process-
ing,” in Proc. of ACM/IEEE ANCS, 2015, pp. 5–16.

[22] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “Nba (network
balancing act): a high-performance packet processing framework for
heterogeneous processors,” in Proc. of ACM EuroSys, 2015, p. 22.

[23] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo et al., “Clicknp: Highly
flexible and high performance network processing with reconfigurable
hardware,” in Proc. of ACM SIGCOMM, 2016, pp. 1–14.

[24] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming slick
network functions,” in Proc. of ACM SOSR, 2015.

[25] R. Kawashima and H. Matsuo, “A generic and efficient local service
function chaining framework for user vm-dedicated micro-vnfs,” IEICE
Transactions on Communications, vol. E100.B, pp. 2017–2026, 2017.

[26] S. R. Chowdhury, M. A. Salahuddin, N. Limam, and R. Boutaba, “Re-
architecting NFV Ecosystem with Microservices: State-of-the-art and
Research Challenges,” IEEE Network (To appear), 2019.

[27] “Clearwater ims,” accessed: Dec 02, 2018. [Online]. Available:
http://www.projectclearwater.org/technical/clearwater-architecture/

[28] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda et al., “E2: a framework
for nfv applications,” in Proc. of ACM SOSP, 2015, pp. 121–136.

[29] G. Liu, Y. Ren, M. Yurchenko, K. Ramakrishnan, and T. Wood,
“Microboxes: high performance nfv with customizable, asynchronous
tcp stacks and dynamic subscriptions,” in Proc. of ACM SIGCOMM,
2018, pp. 504–517.

