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AbstrAct
Network Function Virtualization (NFV), con-

sidered a key enabler of network “softwariza-
tion”, promises to reduce capital and operational 
expenditures for network operators by moving 
packet processing from purpose-built hardware 
to software running on commodity servers. How-
ever, the state-of-the-art in NFV is merely replac-
ing monolithic hardware with monolithic VNFs, 
the software that realizes different network func-
tions (e.g., firewalls, WAN optimizers, and so on). 
Although this is a first step toward deploying NFV, 
common functionality is repeatedly implement-
ed in monolithic VNFs. Repeated execution of 
such redundant functionality introduces process-
ing overhead when VNFs are chained to realize 
Service Function Chains and leads to sub-opti-
mal usage of infrastructure resources. This stresses 
the need for re-architecting the NFV ecosystem, 
from VNFs to their orchestration, through modu-
lar VNF design and flexible service composition. 
In that perspective, we make the case for using 
the microservice software architecture, proven to 
be effective for building large-scale cloud applica-
tions from reusable and independently deployable 
components, to re-architect the NFV ecosystem. 
We also discuss the state-of-the-art in realizing 
modular VNFs from both industry and academia. 
Finally, we outline a set of research challenges for 
microservice-based NFV platforms.

IntroductIon
Network operators ubiquitously deploy hardware 
middleboxes (e.g., firewalls, WAN optimizers, and 
so on) to realize different security and perfor-
mance goals and to offer value-added services 
(e.g., parental control, video-on-demand, and so 
on). The number of middleboxes in a network 
is typically in the same order as the number of 
switches and routers [1]. However, the middlebox 
ecosystem is in many ways similar to the main-
frame industry in the early ‘80s, that is, vendor 
specific, purpose-built and vertically integrated 
hardware, software and control with limited to 
no programmability. Such a closed and inflexible 
ecosystem forces network operators to resort to 
manual and error-prone methods for deploying 
and configuring network services. Deployment 
and configuration scenarios become further com-
plicated when network operators need to steer 
traffic through an ordered sequence of middle-

boxes, that is, a Service Function Chain (SFC) 
(defined in IETF RFC7498). The inflexibilities in 
the middlebox ecosystem lead to increased oper-
ational complexity and expenditure, delaying time 
to market for new services.

More recently, the networking industry is 
going through a transformation known as net-
work softwarization. Network softwarization 
refers to the general practice of decoupling 
network processing and control software from 
specialized hardware. This enables network oper-
ators to replace vendor-specific, purpose-built 
networking equipment with commodity hard-
ware and leverages open APIs to control and 
provision the networking infrastructure in a pro-
grammatic way. A key enabler for network soft-
warization is Network Functions Virtualization 
(NFV) [2]. NFV proposes to virtualize Network 
Functions (NFs), that is, functionality realized by 
the hardware middleboxes, by decoupling the 
traffic processing software from purpose-built 
hardware. In this way, NFV enables the opera-
tors to replace vendor specific, expensive and 
vertically integrated hardware middleboxes with 
Virtual Network Functions (VNFs) running on 
commodity off-the-shelf servers. This increases 
flexibility and re-usability of the same hardware 
for multiple NFs. Hence, NFV brings economies 
of scale and leverages the advances in applica-
tion orchestration for on-demand deployment 
and scaling of SFCs.

NFV is envisioned to increase the agility of the 
communication infrastructure to support future 
applications, for example, IoT, smart grid, smart cit-
ies, connected drones, and so on. However, state-
of-the-art NFV platforms (e.g., OPNFV (https://
www.opnfv.org/), OpenMANO (https://osm.etsi.
org/)) are merely replacing monolithic hardware 
NFs with their monolithic software counterparts. 
Definitely, this is the first logical step toward net-
work softwarization transformation. However, 
monolithic VNFs in SFCs can lead to sub-optimal 
resource usage and hinder infrastructure agility.

A fundamental problem with monolithic VNFs 
is that a large number of common functionalities 
(e.g., packet header parsing, payload inspec-
tion, packet classification, and so on) are repeat-
ed across different VNFs developed by various 
third-party providers. This has several negative 
consequences, including: 
• Redundant development of functionalities in 

different VNFs.
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• Unnecessary processing overhead for exe-
cuting these redundant functionalities when 
VNFs are chained to form SFCs (shown to 
exceed 25 percent for some SFCs [3]).

• Coarse-grain resource allocation and scaling 
imposed by the monolithic nature of VNFs.

These limitations stress the need to rethink how 
VNFs can be developed and orchestrated for 
agile service creation and scaling [4].

In this article, we make the case for re-archi-
tecting the current monolithic VNFs and their 
orchestration to eliminate inherent redundancies 
and exploit their commonalities through modular 
VNF design and fl exible service composition. To 
this end, we envision the adoption of the micro-
service software architecture [5] for building, 
deploying and managing VNFs. The microservice 
software architecture decomposes monolithic 
software into independently deployable compo-
nents with well-defi ned interfaces, called micros-
ervices. It has been proven eff ective for building 
large-scale cloud applications. In the remainder of 
this article, we start by providing background on 
the microservice software architecture. Then we 
make our case for using microservices to re-ar-
chitect VNFs through an illustrative example. This 
is followed by a discussion of recent eff orts from 
industry and academia to develop modular VNFs 
and their supporting runtime systems. Finally, we 
outline several research challenges that we have 
identifi ed for realizing microservice-based VNFs.

MIcrosErvIcE softwArE ArchItEcturE
The National Institute of Standards and Technol-
ogy (NIST) defines microservices as follows: “A 
microservice is a basic element that results from 
the architectural decomposition of an application’s 
components into loosely coupled patterns consist-
ing of self-contained services that communicate 
with each other using a standard communications 
protocol and a set of well-defi ned APIs, indepen-
dent of any vendor, product or technology” [5]. 
From this definition, we draw the following key 
features of microservices.

Self-Contained: A microservice typically per-
forms a single task and does not depend on other 
microservices to perform its task.

Loosely Coupled: Generally, a microservice 
does not require tight synchronization with other 
microservices to operate.

Well Defined Communication Interfaces: In 
a microservice architecture, an application com-
pletes a series of tasks by diff erent microservices. 
For this purpose, microservices must exhibit 
well-defi ned APIs that an orchestrator and other 
microservices can use for communication. A pop-
ular choice for such interface is the RESTful API. 
However, message queues and protocol buffers 
are competing alternatives.

A major advantage of using microservices is 
the ability to allocate resources at a fi ner granular-
ity. For example, consider a monolithic application 
in Fig. 1a, composed of tightly coupled compo 
nents, C1, C2 and C3. A surge in demand requires 
increased processing in components C1 and C2 
of the application. In this monolithic application, 
all components need to be scaled because of the 
tight coupling, resulting in idle resources allocat-
ed to C3. In contrast, consider Fig. 1b, where the 
same application is re-architected using micros-

ervices C1’, C2’ and C3’. Now the scaling of the 
application is more effi  cient in terms of resource 
allocation. Additionally, the self-contained and 
loosely coupled nature of microservices facilitate 
independent development and maintenance.

thE cAsE for AdoptIng MIcrosErvIcEs for nfv
In this section, we motivate the adoption of 
microservice software design principles for re-ar-
chitecting VNFs. We use the example SFC in Fig. 
2a, which is described in an Internet draft for SFC 
use cases in data center networks (https://tools.
ietf.org/html/draft-ietf-sfc-dc-use-cases-06), to illus-
trate the common functionalities between diff er-
ent VNFs. The details of each function in Fig. 2a 
can be found in the Internet draft. In the follow-
ing, we briefl y describe the specifi c functionality 
for our subsequent discussion.

WAN Optimizer: Compresses/decompresses 
HTTP payload (e.g., text, image) on egress/ingress 
traffi  c to optimize bandwidth usage on the WAN 
links that connect a data center to another peer 
data center.

Edge Firewall: Performs access control based 
on layer 2—4 headers, for example, IP subnet, 
TCP port, and so on.

Monitoring Function: Performs the following 
operations: computes the packet size distribution 
from network traffic; and counts the number of 
packets destined to an IP subnet inside the data 
center network.

Application Firewall: Blocks incoming HTTP 
requests that have an SQL injection attack embed-
ded in the URL.

Load Balancer: Distributes traffi  c to the back-
end servers based on the hash of layer 3–4 head-
ers.

We perform a functional decomposition of 
each of the aforementioned VNFs and present 
it in Fig. 2b. Each block in Fig. 2b represents an 
operation performed on a packet while the arrows 
represent the fl ow of operations. We observe the 
following from the decomposition.

FIGURE 1. Monolithic vs. microservice-based application: a) a monolithic applica-
tion with tightly coupled components, ineffi  cient scaling and coarse grain 
resource allocation; b) a microservice-based application with independently 
scalable microservices, facilitating fi ne grain resource allocation.
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Overlapped Functionality: Many of the func-
tionalities are common across VNFs. In some 
cases, the functionality is the same but the param-
eters are different (e.g., writing a packet but to 
diff erent network interface cards (NICs)), while in 
other cases both the functionality and the confi g-
uration are exactly the same (e.g., HTTP packet 
classification performed by both the WAN opti-
mizer and application fi rewall).

Wasted CPU Cycles: Since a functionality 
is embedded within a monolithic VNF, its exe-
cution result is not easily reusable across VNFs 
(e.g., classification of a packet as HTTP by the 
WAN optimizer is not usable by the application 
firewall). Therefore, CPU cycles are wasted due 
to the repeated execution of the same function-
ality when a packet goes through the VNFs in an 
SFC. This is also experimentally validated by prior 
research, reporting more than 25 percent CPU 
cycles are wasted for such redundant processing 
for certain SFCs [3].

Infl exible Scaling: It is diffi  cult to scale resources 
for individual functionalities since they are embed-
ded into monolithic VNFs. If a functional block in 

Fig. 2b becomes a bottleneck, the whole VNF needs 
to be scaled up/out (e.g., there is no easy way to 
allocate additional CPU resources for performing 
URL validation in an application firewall in Fig. 2b 
without scaling up/out the whole VNF instance). 
This requires more resources compared to scaling 
up/out resources for a single functionality.

These observations motivate the adoption 
of microservices for re-architecting the VNFs. 
Applying the microservice software design prin-
ciple to VNFs will result in a set of independently 
deployable packet processing microservices with 
well-defi ned interfaces corresponding to the func-
tional blocks in Fig. 2b. In what follows, we use 
the term mNF to refer to these packet processing 
microservices. An SFC will then be realized by 
orchestrating a processing graph composed of 
mNFs while removing repeated application of the 
same packet processing functionality. As a result, 
it will be possible to recover the CPU cycles spent 
in redundant processing while performing finer 
grain resource allocation.

mNFs are to some extent analogous to the VNF 
components (VNFCs) described in ETSI’s VNF 

FIGURE 2. Illustrative example to motivate microservice-based VNFs: a) example SFC for data center networks; b) functional decomposi-
tion of the VNFs in Fig. 2a.
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architectural description [6]. According to [6], 
a VNF consists of one or more VNFCs, where 
each VNFC has a 1:1 correspondence with a vir-
tualization container (e.g., VM, OS container, and 
so on). However, a major difference between a 
mNF and a VNFC is that mNFs are loosely coupled 
components that can be used across VNF bound-
aries, whereas VNFCs are not. This property also 
makes SFC orchestration diff erent in the case of 
mNFs since there are more optimization opportu-
nities for mNFs compared to VNFCs.

In Fig. 3, we present an optimized realization 
of the SFC from Fig. 2a using mNFs to illustrate 
some of the optimization opportunities. Assuming 
that mechanisms to propagate output of one mNF 
to the others exist, we can consolidate packet 
processing functions such as packet I/O, header 
parsing, HTTP packet classification, and so on. 
Furthermore, some mNFs can be executed in par-
allel, such as the counting functionality performed 
by the monitoring functions that do not modify 
packets. These optimizations are only possible 
due to the inherent loosely coupled characteristic 
of mNFs.

stAtE-of-thE-Art
The history of modular packet processing using 
software dates back to the late ‘90s with the intro-
duction of the Click [7] modular router. Howev-
er, Click is not built based on the principles of 
microservices. It compiles a monolithic packet 
processing software from a set of reusable packet 
processing elements. The concept of modular-
ization in Click motivated later eff orts to address 
the shortcomings of monolithic VNFs. Although 
these endeavors did not always explicitly label 
their approach as using microservices, they follow 
the principles of a microservice architecture. In 
this section, we briefly discuss the efforts from 
both academia and industry that address the 
shortcomings of monolithic VNFs through a mod-
ular design.

AcAdEMIc Efforts
CoMb [3] is one of the early endeavors that par-
tially addressed the shortcomings of monolithic 
VNFs. CoMb proposed to share some low-level 
common functionality between VNFs (e.g., TCP 

session reconstruction). However, apart from a 
set of low-level common functionalities, the VNFs 
in CoMb were monolithic. Some recent eff orts in 
the literature have proposed to replace monolith-
ic VNFs with reusable data path components that 
can be controlled and confi gured from a central-
ized control plane, while others have developed 
runtime systems to support VNFs composed from 
these data plane processing functions. In the fol-
lowing, we discuss the state-of-the-art academic 
efforts and categorize them based on architec-
tures for mNF-based VNFs and runtime systems to 
support mNF-based VNFs, respectively.

mNFs-based VNF Architectures: OpenBox [8] 
and Microboxes [9] are two recent endeavors 
that address the shortcomings of monolithic VNFs. 
Both propose an architecture for composing VNFs 
from lightweight and reusable packet processing 
components. Their proposed architectures have 
similarities and can be generalized as depicted in 
Fig. 4. They realize VNFs and SFCs using a com-
position of lightweight packet processing modules 
(OpenBox Service Instance (OBSI) in OpenBox 
and mStack in Microboxes) running on commod-
ity servers or possibly on specialized hardware. 
OBSIs and mStacks are analogous to mNFs dis-
cussed previously. An application written in a 
high-level language (e.g., Python) determines the 
composition of OBSIs or mStacks (cf. Middlebox 
Apps in Fig. 4). Necessary abstractions for writing 
applications are provided by a middlebox runtime 
system (OpenBox control plane or Microboxes 
controller). The runtime system is also responsible 
for orchestration tasks such as placing OBSIs or 
mStacks and steering traffi  c between them.

A fundamental diff erence between OBSIs and 
mStacks is the way they are executed in a packet 
processing pipeline. OBSIs are executed sequen-
tially and interact with each other using a pack-
et-centric communication model, that is, a batch 
of packets is sequentially processed by the OBSIs 
in a packet processing pipeline until the batch 
exits the system. In contrast, mStacks are exe-
cuted asynchronously and in parallel, and com-
municate with each other using an event based 
publish/subscribe model. A mStack publishes TCP 
processing events (e.g., connection initiation or 
termination) and the associated meta-data (e.g., 

FIGURE 3. Microservice-based realization of the SFC in Fig. 2a.
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pointer to SYN or FIN packets) to other mStacks 
that have subscribed to these events. The sub-
scribed mStacks are then executed, possibly in 
parallel on the packets from the same flow. The 
sequential execution of OBSIs in OpenBox is sim-
pler and easier to reason when compared to the 
asynchronous and parallel execution of mStacks in 
Microboxes. However, the latter reduces packet 
processing latency and better utilizes the CPUs of 
the underlying machines.

Runtime Systems for mNF-based VNFs and 
SFCs: Flurries [10] and NetBricks [11] address 
issues related to the runtime system for support-
ing VNFs composed of components built around 
the concept of mNFs. However, they focus on dif-
ferent aspects of the runtime system. Flurries pro-
poses an efficient packet exchange mechanism 
between mNFs running on Docker containers, 
whereas NetBricks proposes isolation mechanisms 
between multiple instances of mNF-like compo-
nents without using VMs or OS containers.

Flurries assumes the existence of thousands of 
lightweight NFs (similar to mNFs) running in Dock-
er containers, each performing a small packet 
processing task while processing packets from a 
single fl ow. Under these assumptions, Flurries pro-
poses the design of a data plane for the NFs. The 
proposed data plane provides zero-copy packet 
exchange mechanism between the NF containers 
deployed on the same machine. It performs fl ow 
classifi cation and coordinates with a scheduler to 
assign new fl ows to new NFs. A zero-copy packet 
exchange mechanism is provided by using the 
shared memory primitives from the Intel DPDK 
library. The NFs running in containers use a hybrid 

of interrupt and polling techniques to maximize 
throughput while not always using 100 percent 
of the CPU. However, the concept of owner-
ship transfer as provided by virtual switches (e.g., 
Open vSwitch) is not implemented in Flurries. 
Ownership transfer ensures that an NF that has 
finished processing a packet should not be able 
to use the memory handlers to modify the same 
packet in the future.

The authors of NetBricks argue through an 
experimental study that current virtualization tech-
nologies (e.g., VMs, OS containers) cannot meet 
the performance requirement of NFV. According 
to their study, packet processing performance 
for 64 byte packets drops by 3 and 7 for con-
tainers and VMs, respectively, when compared 
to bare-metal performance. NetBricks addresses 
these limitations by designing a process-based 
runtime system, which provides the same memory 
isolation as containers and VMs without incur-
ring the performance overhead. It also provides 
packet processing abstractions to compose VNFs. 
These abstractions are similar to the concept of 
mNFs, that is, they also separate the packet pro-
cessing and the pipeline composition.

However, NetBricks compiles everything into 
one NetBricks process and runs each SFC in a 
separate thread inside that process. Within one 
SFC, that is, within one thread in NetBricks, a NF 
passes its processed packets to the next NF by 
invoking the next NF’s appropriate method, which 
in turn ensures the transfer of packet ownership. 
Furthermore, NetBricks relies on Rust, a mem-
ory-safe programming language that prevents 
unsafe memory operations performed by multi-
ple threads. Although NetBricks does not strictly 
adhere to the concept of mNFs, the proposed run-
time system can be a potential choice for deploy-
ing mNFs.

Flurries and NetBricks address specific issues 
regarding the runtime system, that is, pack-
et exchange mechanism and memory isolation. 
However, they do not address issues such as 
mNFs placement, fault-tolerance, state manage-
ment, and so on. They rely on external systems to 
provide such functionalities.

coMpArIson bEtwEEn AcAdEMIc ApproAchEs
Table 1 presents a comparative study of the aca-
demic eff orts based on the following features.

Abstraction for Processing: This refers to the 
level of abstraction exposed by the underlying 
runtime system for developing mNFs (e.g., packet, 
flow, event). Also, a mNF can have “one-to-one” 
or “one-to-many” relationship with the processing 
granularity, for example, one mNF per fl ow (one-
to-one relationship between mNF and fl ow), one 
mNF for a set of flows (one-to-many relationship 
between mNF and fl ow).

Placement and Resource Allocation: This 
relates to the process of determining the place-
ment and the number of mNFs, and allocating 
sufficient resources to meet the desired QoS 
requirements of the SFC. We classify the propos-
als based on whether they integrate such mecha-
nisms or rely on an external system.

Fault-Tolerance: This pertains to the necessary 
steps to ensure high availability of the SFCs.

Inter mNF Communication: The mechanism 
used by mNFs to exchange packets or events 

FIGURE 4. Generalized architecture of OpenBox [8] and Microboxes [9].
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between them. This can be based on shared 
memory between processes, through a virtual 
switch, through method invocation, and so on

Memory Isolation Mechanism: This refers 
to the mechanisms adopted to provide memory 
isolation between mNFs. Possible options include 
using VMs or OS containers, resorting to memory 
safe programming language and runtime system 
(e.g., Rust and LLVM).

Ownership Transfer: This ensures that once a 
mNF has sent a packet to another mNF, it cannot 
modify the packet using the previously used pack-
et handlers.

The above set of features, though not exhaus-
tive, constitutes the collective feature set inspired 
from the state-of-the-art. The comparison based 
on these features provides an insight into the 
lack of maturity of this area of research and high-
lights the opportunities for further research. For 
example, we can see that the ownership transfer 
between multiple OS containers without copying 
packets is an open issue.

Industry Efforts
There has been some effort from the industry to 
re-architect VNFs using microservices. The Cen-
tral Office Re-architected as Datacenter (CORD) 
project, led by Open Networking Lab (ON.Lab), 
focuses on transforming operator central offic-
es by replacing the purpose-built hardware with 
commodity hardware. CORD also virtualizes a 
number of middleboxes such as Optical Line Ter-
minator, Broadband Network Gateway, and so on 
to their virtual counterparts. A design approach 
taken during the process was to decouple the 
control and processing functions of these middle-
boxes and run them in separate VMs. As a result, 
scaling out data processing functionality does not 
incur the overhead of scaling redundant control 
plane functionalities. This decoupling can be con-
sidered as a step toward microservice decomposi-
tion for NFs.

Another industry effort to leverage the benefits 
of microservices in telecommunication networks 
is from Metaswitch Networks. Clearwater IMS 
(http://www.projectclearwater.org/technical/
clearwater-architecture/) is their recent IP Multi-
media Subsystem (IMS), which has been devel-
oped using the microservices design principle. 
Clearwater IMS can be deployed as a collection 
of independent software components, where 
each component can be horizontally and inde-

pendently scaled. Clearwater stores the sate of 
each component in persistent storage, thus elimi-
nating the complexity of state management while 
scaling the components. However, the compo-
nents themselves are large monolithic software 
components including a substantial number of 
tightly coupled functionalities.

A fundamental difference observed between 
the industry and academic efforts is the granu-
larity of microservice decomposition. Industry 
efforts have favored coarse-grain decomposition, 
compared to the fine-grain decomposition at the 
level of packet operations, promoted by academ-
ic projects.

rEsEArch chAllEngEs
Designing, deploying and managing microser-
vice-based software comes with its own set of 
challenges. Microservice-based NFV platforms 
inherit these challenges and add new dimensions 
due to inherent differences between VNFs and 
cloud applications. These differences include sev-
eral orders of magnitude tighter latency overhead 
budget for VNFs compared to cloud applications, 
and higher reliability requirements (five nines) for 
network operators than cloud service providers 
(four or four and a half nines). In this section, we 
discuss the research challenges confronting the 
realization of microservice-based NFV ecosys-
tems. Interested readers are directed to [12] and 
[13] for issues specific to microservices and NFV, 
respectively.

MIcrosErvIcEs dEcoMposItIon of vnfs
The first challenge in realizing any microser-
vice-based software is to identify the set of 
microservices. This is difficult because it requires 
domain-specific knowledge. In the case of NFV, 
we need to identify and develop a set of suffi-
ciently generic mNFs that are able to realize a 
wide range of VNFs. One way to approach VNF 
decomposition is to leverage domain expertise 
(e.g., by consulting with VNF developers) or to 
study existing open-source VNFs and identify 
smaller functional units. A mNF may perform one 
or more low-level protocol processing tasks cor-
responding to each layer in the TCP/IP stack. For 
example, classify packets on layer-2/3 header, 
re-construct a TCP stream, and so on, or applica-
tion-layer specific processing such as compress-
ing or decompressing text/image in an HTTP 
payload. Indeed, a key research issue here is to 

TABLE 1. Comparison of the academic state-of-the-art.

State-of-the-art

Feature

Abstraction for 
processing

Placement and 
resource allocation

Fault 
tolerance

Inter mNF communication
Memory isolation 
mechanism

Ownership transfer

Microboxes [9] Event (one-to-many) N.A. N.A. Zero-copy shared memory N.A. Not transferred

OpenBox [8] Flow (one-to-many) Heuristic N.A. N.A. VM N.A.

Flurries [10] Flow (one-to-one) External N.A. Zero-copy shared memory Docker container Not transferred

NetBricks [11]
Packet, bytestream 
(one-to-many)

External External
Method invocation inside 
same address space

Threads inside processes 
built using Rust’s memory 
safe operations

Inter-NF procedure call 
marks packets to ensure 
ownership transfer

N.A. = Not addressed
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determine the granularity of such mNF opera-
tions, that is, single packet processing operation 
vs. a collection of operations performing a single 
functionality. On one hand, recent developments 
in modular VNF design propose low-level packet 
processing modules as the VNF building blocks 
([8, 9]). On the other hand, state-of-the-art com-
mercial VNFs (e.g., Clearwater IMS) are being 
constructed from coarse-grain microservices. 
There are advantages and disadvantages of both 
approaches. A fine-grain decomposition facili-
tates better re-usability at the cost of increased 
communication overhead and higher packet pro-
cessing latencies. In turn, coarse-grain decompo-
sition reduces re-usability but has the potential to 
reduce the aforementioned overhead. Therefore, 
it will be very useful to theoretically analyze and 
empirically evaluate this trade-off to determine 
the granularity that is most beneficial for VNF 
decomposition.

coMMunIcAtIon prIMItIvEs for vnf coMposItIon
Microservice software architecture mandates that 
each microservice has a well-defined interface for 
communicating with other microservices. Tradi-
tionally, cloud applications built using microser-
vices have been using RESTful APIs or a message 
broker for communication, which will incur signif-
icant overhead when used for VNF composition. 
In the case of composing VNFs from mNFs, the 
communication interface should have the follow-
ing properties:
• Minimal impact (order of few microseconds) 

on the overall packet processing latency.
• Ensure packet ownership transfer between 

mNFs.
• Allow microservices to pass the result of their 

processing to other microservices to elimi-
nate redundant processing.

• Enable mNF–mNF communication across 
physical machine boundaries. 

Two design extremes of such a communication 
interface are to perform a packet copy between 
microservices and to share packets using a shared 
memory, respectively. The first approach has sig-
nificant performance implications albeit providing 
isolation, whereas the latter will incur low latency 
at the cost of isolation.

rEsourcE AllocAtIon for Qos-AwArE vnf coMposItIon
The ability to use mNFs beyond VNF boundaries 
creates opportunities for optimizing resources 
allocated to SFCs. Recall from above that there 
are possibilities of consolidating multiple mNFs 
and also parallelizing the execution of a subset of 
mNFs in an SFC. A systematic approach is required 
to develop algorithms for resource allocation for 
mNFs that take the aforementioned possibilities 
into account while meeting QoS requirements 
(e.g., throughput). Other possibilities to consider 
include reordering the mNFs without changing the 
SFC semantics to improve existing placements 

or make new ones feasible, which were not pos-
sible with monolithic VNFs. Also, algorithms for 
dynamically scaling microservices to meet chang-
es in traffic demand also need attention from the 
research community.

MIcrosErvIcE pErforMAncE profIlIng
A key to efficient resource allocation and VNF 
management is to have accurate resource usage 
and performance profiles of the mNFs. The per-
formance profile of mNFs will contain resources 
required (e.g., CPU share) to achieve certain QoS 
parameters (e.g., packets processed per second) 
under a given workload. Such profiles help the 
orchestration system to optimize mNF placement 
and the operators to reason about the perceived 
performance. This non-trivial task requires devel-
oping workloads that represent realistic scenari-
os and instrumentation mechanisms to measure 
different performance parameters under various 
loads.

ovErhEAd vs. flExIbIlIty
From an architectural perspective, microservices 
are an attractive choice for re-designing network 
functions. However, from a practical standpoint 
such redesign can also add overhead to pack-
et processing (e.g., increased processing laten-
cy due to long paths in a mNF processing graph). 
A systematic study is required to understand the 
trade-offs between the observed overhead and 
the achieved flexibility. Such a study will help to 
identify the use cases where microservice-based 
NFs are more beneficial.

lAnguAgE for vnf And sfc coMposItIon
A fundamental requirement in a microser-
vice-based NFV platform is a language that can 
capture the hierarchical nature of SFC compo-
sition, that is, how VNFs are composed using 
mNFs (a VNF template) and subsequently how 
SFCs will be composed from VNFs (SFC speci-
fication). When a network operator defines an 
SFC by describing the VNFs and their intercon-
nections, the first step for the orchestrator is to 
translate the SFC or a set of SFCs to a mNF pro-
cessing graph by leveraging a set of predefined 
VNF templates. This translation acts as a basis for 
further optimizing the mNF graph for resource 
allocation. Available orchestration languages such 
as TOSCA (https://docs.oasis-open.org/tosca/
tosca-nfv/v1.0/tosca-nfv-v1.0.html) and HOT 
(http://docs.openstack.org/developer/heat/tem-
plate_guide/hot_guide.html) can be evaluated for 
possible adoption or new languages need to be 
developed.

fAult tolErAncE And rEcovEry
In general, fault tolerance has been a key con-
cern for microservice-based software. Re-usability, 
a key feature of microservices, is also responsi-
ble for causing cascading failures. However, the 
situation becomes even more critical for tele-
communication network operators who typical-
ly require higher reliability (five nines or more) 
compared to cloud service providers (four nines). 
A major challenge in realizing microservice-based 
NFV platforms is to ensure strong consistency of 
mNF states while recovering from failures with-
in an order of milliseconds. And all this needs to 

From an architectural perspective, microservices are an attractive choice for re-designing network 
functions. However, from a practical standpoint such redesign can also add overhead to packet  
processing. A systematic study is required to understand the trade-offs between the observed  

overhead and the achieved flexibility.
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be achieved with an overhead budget of a few 
microseconds per packet.

stAtElEss vs. stAtEful MIcrosErvIcE dEsIgn
A design choice in building microservice-based 
VNFs is to determine the placement of states 
(e.g., address translation table). One approach 
is to keep the states with the microservices for 
easier maintenance. However, this makes scal-
ing difficult due to state synchronization. Anoth-
er approach is to maintain the VNF-specific state 
external to the microservices and have a sepa-
rate logic for handling it (e.g., similar to [14]). 
This decouples the microservices from stateful 
network processing and facilitates easier scaling. 
However, this can add to the packet processing 
latency due to remote state access. Therefore, the 
challenge lies in striking a balance between ease 
of scaling and maintenance overhead in such a 
platform.

vIrtuAlIzAtIon plAtforMs
Virtualization provides isolation between coexisting 
applications. However, the level of virtualization 
has an impact on the level of isolation and the per-
formance overhead. A popular choice for deploy-
ing microservices in the cloud is containers (e.g., 
Docker). However, studies show severe perfor-
mance degradation in packet processing through-
put even when using containers [11]. Ideally, the 
virtualization platform should have minimal perfor-
mance impact compared to bare-metal and should 
be able to spawn mNFs within milliseconds to sup-
port on-demand service provisioning. This man-
dates the need for new virtualization platforms to 
support mNFs. One research direction is to explore 
unikernel operating systems [15] to create a light-
weight virtualization platform for mNFs.

undErlyIng coMputEr ArchItEcturEs
Appropriate computer architectures to support 
mNF-based VNFs is an important consideration. 
State-of-the-art multi-core processors have tens 
of processing cores, reaching up to hundreds 
with multiple CPU sockets. However, inter-core 
communication and synchronization is considered 
expensive, let alone its inter-socket counterpart. A 
possible area of exploration is to use processors 
with hundreds of small and power-efficient cores 
to allow many microservices to be co-located on 
a single machine. In this regard, rack-scale com-
puting architectures, that is, servers with a large 
number of tightly integrated systems-on-a-chip, is 
a possible candidate for exploration.

MonItorIng
Monitoring is an integral part of any network 
management system. A key challenge in micro-
service-based NFV platforms will be to derive 
end-to-end metrics (e.g., end-to-end latency) from 
mNF-specific monitoring data (e.g., per pack-
et latency). The challenges come from the fact 
that packets can take different paths in the mNF 
processing graph. Therefore, tracing the end-to-
end packet life-cycle will require understanding 
the interaction between microservices. This will 
require developing the necessary infrastructure to 
ingest mNF–mNF interaction and mNF-specific met-
rics, and to analyze the data to obtain end-to-end 
performance metrics. Another design consider-

ation is to equip the microservices with necessary 
monitoring hooks (e.g., counters, filters and so 
on) in the first place to facilitate the derivation of 
end-to-end performance metrics.

dEbuggIng And vErIfIcAtIon
Debugging and verification are essential tools for 
both the developers and the network operators. 
This has been a well-investigated research topic 
for different kinds of networks. An additional chal-
lenge in mNF-based deployment will be the scale 
of the problem. A mNFs-based deployment will 
increase the scale of NFV deployment by at least 
an order of magnitude. In addition, the debugging 
and verification tools must be able to capture the 
interaction between different mNFs. Capturing the 
interaction between mNFs, analyzing the interac-
tion to capture the semantics of SFCs, verifica-
tion of the semantics against network policies and 
identifying the root cause of errors are some inter-
esting research problems to explore.

co-ExIstEncE wIth trAdItIonAl nfv EcosystEM
The transformation from monolithic VNFs to mNF-
based ones will not happen overnight. Rather, 
we envision the two ecosystems to co-exist for 
some time. This poses challenges in designing the 
orchestrator, for instance. In a hybrid deployment, 
the orchestrator should be able to communicate 
with both monolithic VNFs and mNFs. There is 
also room for alternative deployment models 
where each ecosystem has its own local orches-
trator, managed by a global orchestrator.

conclusIon
In this article, we motivate the adoption of the 
microservice architecture for re-architecting the 
NFV ecosystem. The ultimate goal is to speed up 
innovation in NFV by: 
• Allowing independent development of small 

pieces of the ecosystem.
• Improving the utilization of underlying infra-

structure, thus positively impacting opera-
tional costs.

• Contributing to increasing the infrastructure 
agility for supporting the next generation of 
applications.

We also surveyed the state-of-the-art from both 
industry and academia. Our survey indicates that 
research in this field is still in its infancy and pro-
vides great opportunities for future contributions. 
The research challenges presented in this article 
can constitute a starting point for interested read-
ers in this exciting area.
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