
IEEE Network • May/June 2019168 0890-8044/19/$25.00 © 2019 IEEE

AbstrAct
Network Function Virtualization (NFV), con-

sidered a key enabler of network “softwariza-
tion”, promises to reduce capital and operational
expenditures for network operators by moving
packet processing from purpose-built hardware
to software running on commodity servers. How-
ever, the state-of-the-art in NFV is merely replac-
ing monolithic hardware with monolithic VNFs,
the software that realizes different network func-
tions (e.g., firewalls, WAN optimizers, and so on).
Although this is a first step toward deploying NFV,
common functionality is repeatedly implement-
ed in monolithic VNFs. Repeated execution of
such redundant functionality introduces process-
ing overhead when VNFs are chained to realize
Service Function Chains and leads to sub-opti-
mal usage of infrastructure resources. This stresses
the need for re-architecting the NFV ecosystem,
from VNFs to their orchestration, through modu-
lar VNF design and flexible service composition.
In that perspective, we make the case for using
the microservice software architecture, proven to
be effective for building large-scale cloud applica-
tions from reusable and independently deployable
components, to re-architect the NFV ecosystem.
We also discuss the state-of-the-art in realizing
modular VNFs from both industry and academia.
Finally, we outline a set of research challenges for
microservice-based NFV platforms.

IntroductIon
Network operators ubiquitously deploy hardware
middleboxes (e.g., firewalls, WAN optimizers, and
so on) to realize different security and perfor-
mance goals and to offer value-added services
(e.g., parental control, video-on-demand, and so
on). The number of middleboxes in a network
is typically in the same order as the number of
switches and routers [1]. However, the middlebox
ecosystem is in many ways similar to the main-
frame industry in the early ‘80s, that is, vendor
specific, purpose-built and vertically integrated
hardware, software and control with limited to
no programmability. Such a closed and inflexible
ecosystem forces network operators to resort to
manual and error-prone methods for deploying
and configuring network services. Deployment
and configuration scenarios become further com-
plicated when network operators need to steer
traffic through an ordered sequence of middle-

boxes, that is, a Service Function Chain (SFC)
(defined in IETF RFC7498). The inflexibilities in
the middlebox ecosystem lead to increased oper-
ational complexity and expenditure, delaying time
to market for new services.

More recently, the networking industry is
going through a transformation known as net-
work softwarization. Network softwarization
refers to the general practice of decoupling
network processing and control software from
specialized hardware. This enables network oper-
ators to replace vendor-specific, purpose-built
networking equipment with commodity hard-
ware and leverages open APIs to control and
provision the networking infrastructure in a pro-
grammatic way. A key enabler for network soft-
warization is Network Functions Virtualization
(NFV) [2]. NFV proposes to virtualize Network
Functions (NFs), that is, functionality realized by
the hardware middleboxes, by decoupling the
traffic processing software from purpose-built
hardware. In this way, NFV enables the opera-
tors to replace vendor specific, expensive and
vertically integrated hardware middleboxes with
Virtual Network Functions (VNFs) running on
commodity off-the-shelf servers. This increases
flexibility and re-usability of the same hardware
for multiple NFs. Hence, NFV brings economies
of scale and leverages the advances in applica-
tion orchestration for on-demand deployment
and scaling of SFCs.

NFV is envisioned to increase the agility of the
communication infrastructure to support future
applications, for example, IoT, smart grid, smart cit-
ies, connected drones, and so on. However, state-
of-the-art NFV platforms (e.g., OPNFV (https://
www.opnfv.org/), OpenMANO (https://osm.etsi.
org/)) are merely replacing monolithic hardware
NFs with their monolithic software counterparts.
Definitely, this is the first logical step toward net-
work softwarization transformation. However,
monolithic VNFs in SFCs can lead to sub-optimal
resource usage and hinder infrastructure agility.

A fundamental problem with monolithic VNFs
is that a large number of common functionalities
(e.g., packet header parsing, payload inspec-
tion, packet classification, and so on) are repeat-
ed across different VNFs developed by various
third-party providers. This has several negative
consequences, including:
• Redundant development of functionalities in

different VNFs.

Re-Architecting NFV Ecosystem with Microservices: State of the Art and Research
Challenges
Shihabur Rahman Chowdhury, Mohammad A. Salahuddin, Noura Limam, and Raouf Boutaba

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.2019.1800082 The authors are with the University of Waterloo.

IEEE Network • May/June 2019 169

• Unnecessary processing overhead for exe-
cuting these redundant functionalities when
VNFs are chained to form SFCs (shown to
exceed 25 percent for some SFCs [3]).

• Coarse-grain resource allocation and scaling
imposed by the monolithic nature of VNFs.

These limitations stress the need to rethink how
VNFs can be developed and orchestrated for
agile service creation and scaling [4].

In this article, we make the case for re-archi-
tecting the current monolithic VNFs and their
orchestration to eliminate inherent redundancies
and exploit their commonalities through modular
VNF design and fl exible service composition. To
this end, we envision the adoption of the micro-
service software architecture [5] for building,
deploying and managing VNFs. The microservice
software architecture decomposes monolithic
software into independently deployable compo-
nents with well-defi ned interfaces, called micros-
ervices. It has been proven eff ective for building
large-scale cloud applications. In the remainder of
this article, we start by providing background on
the microservice software architecture. Then we
make our case for using microservices to re-ar-
chitect VNFs through an illustrative example. This
is followed by a discussion of recent eff orts from
industry and academia to develop modular VNFs
and their supporting runtime systems. Finally, we
outline several research challenges that we have
identifi ed for realizing microservice-based VNFs.

MIcrosErvIcE softwArE ArchItEcturE
The National Institute of Standards and Technol-
ogy (NIST) defines microservices as follows: “A
microservice is a basic element that results from
the architectural decomposition of an application’s
components into loosely coupled patterns consist-
ing of self-contained services that communicate
with each other using a standard communications
protocol and a set of well-defi ned APIs, indepen-
dent of any vendor, product or technology” [5].
From this definition, we draw the following key
features of microservices.

Self-Contained: A microservice typically per-
forms a single task and does not depend on other
microservices to perform its task.

Loosely Coupled: Generally, a microservice
does not require tight synchronization with other
microservices to operate.

Well Defined Communication Interfaces: In
a microservice architecture, an application com-
pletes a series of tasks by diff erent microservices.
For this purpose, microservices must exhibit
well-defi ned APIs that an orchestrator and other
microservices can use for communication. A pop-
ular choice for such interface is the RESTful API.
However, message queues and protocol buffers
are competing alternatives.

A major advantage of using microservices is
the ability to allocate resources at a fi ner granular-
ity. For example, consider a monolithic application
in Fig. 1a, composed of tightly coupled compo
nents, C1, C2 and C3. A surge in demand requires
increased processing in components C1 and C2
of the application. In this monolithic application,
all components need to be scaled because of the
tight coupling, resulting in idle resources allocat-
ed to C3. In contrast, consider Fig. 1b, where the
same application is re-architected using micros-

ervices C1’, C2’ and C3’. Now the scaling of the
application is more effi cient in terms of resource
allocation. Additionally, the self-contained and
loosely coupled nature of microservices facilitate
independent development and maintenance.

thE cAsE for AdoptIng MIcrosErvIcEs for nfv
In this section, we motivate the adoption of
microservice software design principles for re-ar-
chitecting VNFs. We use the example SFC in Fig.
2a, which is described in an Internet draft for SFC
use cases in data center networks (https://tools.
ietf.org/html/draft-ietf-sfc-dc-use-cases-06), to illus-
trate the common functionalities between diff er-
ent VNFs. The details of each function in Fig. 2a
can be found in the Internet draft. In the follow-
ing, we briefl y describe the specifi c functionality
for our subsequent discussion.

WAN Optimizer: Compresses/decompresses
HTTP payload (e.g., text, image) on egress/ingress
traffi c to optimize bandwidth usage on the WAN
links that connect a data center to another peer
data center.

Edge Firewall: Performs access control based
on layer 2—4 headers, for example, IP subnet,
TCP port, and so on.

Monitoring Function: Performs the following
operations: computes the packet size distribution
from network traffic; and counts the number of
packets destined to an IP subnet inside the data
center network.

Application Firewall: Blocks incoming HTTP
requests that have an SQL injection attack embed-
ded in the URL.

Load Balancer: Distributes traffi c to the back-
end servers based on the hash of layer 3–4 head-
ers.

We perform a functional decomposition of
each of the aforementioned VNFs and present
it in Fig. 2b. Each block in Fig. 2b represents an
operation performed on a packet while the arrows
represent the fl ow of operations. We observe the
following from the decomposition.

FIGURE 1. Monolithic vs. microservice-based application: a) a monolithic applica-
tion with tightly coupled components, ineffi cient scaling and coarse grain
resource allocation; b) a microservice-based application with independently
scalable microservices, facilitating fi ne grain resource allocation.

C1 C2

C3

S
caling

C1 C2

C3

C1 C2

C3

C1’ C2’

C3’

C1’

C3’

C2’S
caling

C1’C1’

C1’C1’ C1’C1’

C2’ C3’

(a)

(b)

IEEE Network • May/June 2019170

Overlapped Functionality: Many of the func-
tionalities are common across VNFs. In some
cases, the functionality is the same but the param-
eters are different (e.g., writing a packet but to
diff erent network interface cards (NICs)), while in
other cases both the functionality and the confi g-
uration are exactly the same (e.g., HTTP packet
classification performed by both the WAN opti-
mizer and application fi rewall).

Wasted CPU Cycles: Since a functionality
is embedded within a monolithic VNF, its exe-
cution result is not easily reusable across VNFs
(e.g., classification of a packet as HTTP by the
WAN optimizer is not usable by the application
firewall). Therefore, CPU cycles are wasted due
to the repeated execution of the same function-
ality when a packet goes through the VNFs in an
SFC. This is also experimentally validated by prior
research, reporting more than 25 percent CPU
cycles are wasted for such redundant processing
for certain SFCs [3].

Infl exible Scaling: It is diffi cult to scale resources
for individual functionalities since they are embed-
ded into monolithic VNFs. If a functional block in

Fig. 2b becomes a bottleneck, the whole VNF needs
to be scaled up/out (e.g., there is no easy way to
allocate additional CPU resources for performing
URL validation in an application firewall in Fig. 2b
without scaling up/out the whole VNF instance).
This requires more resources compared to scaling
up/out resources for a single functionality.

These observations motivate the adoption
of microservices for re-architecting the VNFs.
Applying the microservice software design prin-
ciple to VNFs will result in a set of independently
deployable packet processing microservices with
well-defi ned interfaces corresponding to the func-
tional blocks in Fig. 2b. In what follows, we use
the term mNF to refer to these packet processing
microservices. An SFC will then be realized by
orchestrating a processing graph composed of
mNFs while removing repeated application of the
same packet processing functionality. As a result,
it will be possible to recover the CPU cycles spent
in redundant processing while performing finer
grain resource allocation.

mNFs are to some extent analogous to the VNF
components (VNFCs) described in ETSI’s VNF

FIGURE 2. Illustrative example to motivate microservice-based VNFs: a) example SFC for data center networks; b) functional decomposi-
tion of the VNFs in Fig. 2a.

WAN
Optimizer

Edge
Firewall

Monitoring
Functions

Application
Firewall

Load
Balancer

Access Functions Application Functions

To servers
hosting

applications

Read From
NIC

Parse
Headers

Classify on L7
Type Decompress HTTP PayLoad

Send To NIC

HTTP Traffic Decompress HTTP PayLoad

Other Traffic

WAN Optimizer
(From WAN to
DC direction):

Edge Firewall: Read From
NIC

Parse
Headers

Classify on
L3/L4 Header Send To NIC

Drop Packet

Allow

Deny

Application
Firewall:

Read From
NIC

Parse
Headers

Classify on L7
Type Validate URL

Drop Packet

HTTP Traffic

Other Traffic

Send To NIC
UnsafeSafe

Load Balancer: Read From
NIC

Parse
Headers

Distribute
Packets on

Hash of
Headers

Send To NIC1

Send To NIC2

Monitoring
Functions:

Read From
NIC

Parse
Headers

Compute
Packet Size
Distribution

Send To NIC
Count

Packets To
Subnet X

(a)

(b)

IEEE Network • May/June 2019 171

architectural description [6]. According to [6],
a VNF consists of one or more VNFCs, where
each VNFC has a 1:1 correspondence with a vir-
tualization container (e.g., VM, OS container, and
so on). However, a major difference between a
mNF and a VNFC is that mNFs are loosely coupled
components that can be used across VNF bound-
aries, whereas VNFCs are not. This property also
makes SFC orchestration diff erent in the case of
mNFs since there are more optimization opportu-
nities for mNFs compared to VNFCs.

In Fig. 3, we present an optimized realization
of the SFC from Fig. 2a using mNFs to illustrate
some of the optimization opportunities. Assuming
that mechanisms to propagate output of one mNF
to the others exist, we can consolidate packet
processing functions such as packet I/O, header
parsing, HTTP packet classification, and so on.
Furthermore, some mNFs can be executed in par-
allel, such as the counting functionality performed
by the monitoring functions that do not modify
packets. These optimizations are only possible
due to the inherent loosely coupled characteristic
of mNFs.

stAtE-of-thE-Art
The history of modular packet processing using
software dates back to the late ‘90s with the intro-
duction of the Click [7] modular router. Howev-
er, Click is not built based on the principles of
microservices. It compiles a monolithic packet
processing software from a set of reusable packet
processing elements. The concept of modular-
ization in Click motivated later eff orts to address
the shortcomings of monolithic VNFs. Although
these endeavors did not always explicitly label
their approach as using microservices, they follow
the principles of a microservice architecture. In
this section, we briefly discuss the efforts from
both academia and industry that address the
shortcomings of monolithic VNFs through a mod-
ular design.

AcAdEMIc Efforts
CoMb [3] is one of the early endeavors that par-
tially addressed the shortcomings of monolithic
VNFs. CoMb proposed to share some low-level
common functionality between VNFs (e.g., TCP

session reconstruction). However, apart from a
set of low-level common functionalities, the VNFs
in CoMb were monolithic. Some recent eff orts in
the literature have proposed to replace monolith-
ic VNFs with reusable data path components that
can be controlled and confi gured from a central-
ized control plane, while others have developed
runtime systems to support VNFs composed from
these data plane processing functions. In the fol-
lowing, we discuss the state-of-the-art academic
efforts and categorize them based on architec-
tures for mNF-based VNFs and runtime systems to
support mNF-based VNFs, respectively.

mNFs-based VNF Architectures: OpenBox [8]
and Microboxes [9] are two recent endeavors
that address the shortcomings of monolithic VNFs.
Both propose an architecture for composing VNFs
from lightweight and reusable packet processing
components. Their proposed architectures have
similarities and can be generalized as depicted in
Fig. 4. They realize VNFs and SFCs using a com-
position of lightweight packet processing modules
(OpenBox Service Instance (OBSI) in OpenBox
and mStack in Microboxes) running on commod-
ity servers or possibly on specialized hardware.
OBSIs and mStacks are analogous to mNFs dis-
cussed previously. An application written in a
high-level language (e.g., Python) determines the
composition of OBSIs or mStacks (cf. Middlebox
Apps in Fig. 4). Necessary abstractions for writing
applications are provided by a middlebox runtime
system (OpenBox control plane or Microboxes
controller). The runtime system is also responsible
for orchestration tasks such as placing OBSIs or
mStacks and steering traffi c between them.

A fundamental diff erence between OBSIs and
mStacks is the way they are executed in a packet
processing pipeline. OBSIs are executed sequen-
tially and interact with each other using a pack-
et-centric communication model, that is, a batch
of packets is sequentially processed by the OBSIs
in a packet processing pipeline until the batch
exits the system. In contrast, mStacks are exe-
cuted asynchronously and in parallel, and com-
municate with each other using an event based
publish/subscribe model. A mStack publishes TCP
processing events (e.g., connection initiation or
termination) and the associated meta-data (e.g.,

FIGURE 3. Microservice-based realization of the SFC in Fig. 2a.

Read From
NIC

Parse
Headers

Classify on L7
Type

Decompress HTTP PayLoad

HTTP Traffic

Classify on
L3/L4 Header

Parallel
Processing

Deny

Drop Packet

Other
Traffic

Distribute
Packets on

Hash of
Headers

Send To NIC1

Send To NIC2

Compute
Packet Size
Distribution

Count
Packets To
Subnet X

Is Payload Compressed?

Validate URL

Allow

Safe

Unsafe

YesNo

IEEE Network • May/June 2019172

pointer to SYN or FIN packets) to other mStacks
that have subscribed to these events. The sub-
scribed mStacks are then executed, possibly in
parallel on the packets from the same flow. The
sequential execution of OBSIs in OpenBox is sim-
pler and easier to reason when compared to the
asynchronous and parallel execution of mStacks in
Microboxes. However, the latter reduces packet
processing latency and better utilizes the CPUs of
the underlying machines.

Runtime Systems for mNF-based VNFs and
SFCs: Flurries [10] and NetBricks [11] address
issues related to the runtime system for support-
ing VNFs composed of components built around
the concept of mNFs. However, they focus on dif-
ferent aspects of the runtime system. Flurries pro-
poses an efficient packet exchange mechanism
between mNFs running on Docker containers,
whereas NetBricks proposes isolation mechanisms
between multiple instances of mNF-like compo-
nents without using VMs or OS containers.

Flurries assumes the existence of thousands of
lightweight NFs (similar to mNFs) running in Dock-
er containers, each performing a small packet
processing task while processing packets from a
single fl ow. Under these assumptions, Flurries pro-
poses the design of a data plane for the NFs. The
proposed data plane provides zero-copy packet
exchange mechanism between the NF containers
deployed on the same machine. It performs fl ow
classifi cation and coordinates with a scheduler to
assign new fl ows to new NFs. A zero-copy packet
exchange mechanism is provided by using the
shared memory primitives from the Intel DPDK
library. The NFs running in containers use a hybrid

of interrupt and polling techniques to maximize
throughput while not always using 100 percent
of the CPU. However, the concept of owner-
ship transfer as provided by virtual switches (e.g.,
Open vSwitch) is not implemented in Flurries.
Ownership transfer ensures that an NF that has
finished processing a packet should not be able
to use the memory handlers to modify the same
packet in the future.

The authors of NetBricks argue through an
experimental study that current virtualization tech-
nologies (e.g., VMs, OS containers) cannot meet
the performance requirement of NFV. According
to their study, packet processing performance
for 64 byte packets drops by 3 and 7 for con-
tainers and VMs, respectively, when compared
to bare-metal performance. NetBricks addresses
these limitations by designing a process-based
runtime system, which provides the same memory
isolation as containers and VMs without incur-
ring the performance overhead. It also provides
packet processing abstractions to compose VNFs.
These abstractions are similar to the concept of
mNFs, that is, they also separate the packet pro-
cessing and the pipeline composition.

However, NetBricks compiles everything into
one NetBricks process and runs each SFC in a
separate thread inside that process. Within one
SFC, that is, within one thread in NetBricks, a NF
passes its processed packets to the next NF by
invoking the next NF’s appropriate method, which
in turn ensures the transfer of packet ownership.
Furthermore, NetBricks relies on Rust, a mem-
ory-safe programming language that prevents
unsafe memory operations performed by multi-
ple threads. Although NetBricks does not strictly
adhere to the concept of mNFs, the proposed run-
time system can be a potential choice for deploy-
ing mNFs.

Flurries and NetBricks address specific issues
regarding the runtime system, that is, pack-
et exchange mechanism and memory isolation.
However, they do not address issues such as
mNFs placement, fault-tolerance, state manage-
ment, and so on. They rely on external systems to
provide such functionalities.

coMpArIson bEtwEEn AcAdEMIc ApproAchEs
Table 1 presents a comparative study of the aca-
demic eff orts based on the following features.

Abstraction for Processing: This refers to the
level of abstraction exposed by the underlying
runtime system for developing mNFs (e.g., packet,
flow, event). Also, a mNF can have “one-to-one”
or “one-to-many” relationship with the processing
granularity, for example, one mNF per fl ow (one-
to-one relationship between mNF and fl ow), one
mNF for a set of flows (one-to-many relationship
between mNF and fl ow).

Placement and Resource Allocation: This
relates to the process of determining the place-
ment and the number of mNFs, and allocating
sufficient resources to meet the desired QoS
requirements of the SFC. We classify the propos-
als based on whether they integrate such mecha-
nisms or rely on an external system.

Fault-Tolerance: This pertains to the necessary
steps to ensure high availability of the SFCs.

Inter mNF Communication: The mechanism
used by mNFs to exchange packets or events

FIGURE 4. Generalized architecture of OpenBox [8] and Microboxes [9].

Commodity Server

Packet Processor 1

Packet Processor 2

Packet Processor k

…

Specialized Hardware
(Switch/Router/

Specialized ASIC etc.)

Network Control Plane

Packet Processor 1

Packet Processor 2

…

Middlebox Runtime

Middlebox
App - 1

Middlebox
App - 2

Middlebox
App - n

Southbound API

Northbound API

…

IEEE Network • May/June 2019 173

between them. This can be based on shared
memory between processes, through a virtual
switch, through method invocation, and so on

Memory Isolation Mechanism: This refers
to the mechanisms adopted to provide memory
isolation between mNFs. Possible options include
using VMs or OS containers, resorting to memory
safe programming language and runtime system
(e.g., Rust and LLVM).

Ownership Transfer: This ensures that once a
mNF has sent a packet to another mNF, it cannot
modify the packet using the previously used pack-
et handlers.

The above set of features, though not exhaus-
tive, constitutes the collective feature set inspired
from the state-of-the-art. The comparison based
on these features provides an insight into the
lack of maturity of this area of research and high-
lights the opportunities for further research. For
example, we can see that the ownership transfer
between multiple OS containers without copying
packets is an open issue.

Industry Efforts
There has been some effort from the industry to
re-architect VNFs using microservices. The Cen-
tral Office Re-architected as Datacenter (CORD)
project, led by Open Networking Lab (ON.Lab),
focuses on transforming operator central offic-
es by replacing the purpose-built hardware with
commodity hardware. CORD also virtualizes a
number of middleboxes such as Optical Line Ter-
minator, Broadband Network Gateway, and so on
to their virtual counterparts. A design approach
taken during the process was to decouple the
control and processing functions of these middle-
boxes and run them in separate VMs. As a result,
scaling out data processing functionality does not
incur the overhead of scaling redundant control
plane functionalities. This decoupling can be con-
sidered as a step toward microservice decomposi-
tion for NFs.

Another industry effort to leverage the benefits
of microservices in telecommunication networks
is from Metaswitch Networks. Clearwater IMS
(http://www.projectclearwater.org/technical/
clearwater-architecture/) is their recent IP Multi-
media Subsystem (IMS), which has been devel-
oped using the microservices design principle.
Clearwater IMS can be deployed as a collection
of independent software components, where
each component can be horizontally and inde-

pendently scaled. Clearwater stores the sate of
each component in persistent storage, thus elimi-
nating the complexity of state management while
scaling the components. However, the compo-
nents themselves are large monolithic software
components including a substantial number of
tightly coupled functionalities.

A fundamental difference observed between
the industry and academic efforts is the granu-
larity of microservice decomposition. Industry
efforts have favored coarse-grain decomposition,
compared to the fine-grain decomposition at the
level of packet operations, promoted by academ-
ic projects.

rEsEArch chAllEngEs
Designing, deploying and managing microser-
vice-based software comes with its own set of
challenges. Microservice-based NFV platforms
inherit these challenges and add new dimensions
due to inherent differences between VNFs and
cloud applications. These differences include sev-
eral orders of magnitude tighter latency overhead
budget for VNFs compared to cloud applications,
and higher reliability requirements (five nines) for
network operators than cloud service providers
(four or four and a half nines). In this section, we
discuss the research challenges confronting the
realization of microservice-based NFV ecosys-
tems. Interested readers are directed to [12] and
[13] for issues specific to microservices and NFV,
respectively.

MIcrosErvIcEs dEcoMposItIon of vnfs
The first challenge in realizing any microser-
vice-based software is to identify the set of
microservices. This is difficult because it requires
domain-specific knowledge. In the case of NFV,
we need to identify and develop a set of suffi-
ciently generic mNFs that are able to realize a
wide range of VNFs. One way to approach VNF
decomposition is to leverage domain expertise
(e.g., by consulting with VNF developers) or to
study existing open-source VNFs and identify
smaller functional units. A mNF may perform one
or more low-level protocol processing tasks cor-
responding to each layer in the TCP/IP stack. For
example, classify packets on layer-2/3 header,
re-construct a TCP stream, and so on, or applica-
tion-layer specific processing such as compress-
ing or decompressing text/image in an HTTP
payload. Indeed, a key research issue here is to

TABLE 1. Comparison of the academic state-of-the-art.

State-of-the-art

Feature

Abstraction for
processing

Placement and
resource allocation

Fault
tolerance

Inter mNF communication
Memory isolation
mechanism

Ownership transfer

Microboxes [9] Event (one-to-many) N.A. N.A. Zero-copy shared memory N.A. Not transferred

OpenBox [8] Flow (one-to-many) Heuristic N.A. N.A. VM N.A.

Flurries [10] Flow (one-to-one) External N.A. Zero-copy shared memory Docker container Not transferred

NetBricks [11]
Packet, bytestream
(one-to-many)

External External
Method invocation inside
same address space

Threads inside processes
built using Rust’s memory
safe operations

Inter-NF procedure call
marks packets to ensure
ownership transfer

N.A. = Not addressed

IEEE Network • May/June 2019174

determine the granularity of such mNF opera-
tions, that is, single packet processing operation
vs. a collection of operations performing a single
functionality. On one hand, recent developments
in modular VNF design propose low-level packet
processing modules as the VNF building blocks
([8, 9]). On the other hand, state-of-the-art com-
mercial VNFs (e.g., Clearwater IMS) are being
constructed from coarse-grain microservices.
There are advantages and disadvantages of both
approaches. A fine-grain decomposition facili-
tates better re-usability at the cost of increased
communication overhead and higher packet pro-
cessing latencies. In turn, coarse-grain decompo-
sition reduces re-usability but has the potential to
reduce the aforementioned overhead. Therefore,
it will be very useful to theoretically analyze and
empirically evaluate this trade-off to determine
the granularity that is most beneficial for VNF
decomposition.

coMMunIcAtIon prIMItIvEs for vnf coMposItIon
Microservice software architecture mandates that
each microservice has a well-defined interface for
communicating with other microservices. Tradi-
tionally, cloud applications built using microser-
vices have been using RESTful APIs or a message
broker for communication, which will incur signif-
icant overhead when used for VNF composition.
In the case of composing VNFs from mNFs, the
communication interface should have the follow-
ing properties:
• Minimal impact (order of few microseconds)

on the overall packet processing latency.
• Ensure packet ownership transfer between

mNFs.
• Allow microservices to pass the result of their

processing to other microservices to elimi-
nate redundant processing.

• Enable mNF–mNF communication across
physical machine boundaries.

Two design extremes of such a communication
interface are to perform a packet copy between
microservices and to share packets using a shared
memory, respectively. The first approach has sig-
nificant performance implications albeit providing
isolation, whereas the latter will incur low latency
at the cost of isolation.

rEsourcE AllocAtIon for Qos-AwArE vnf coMposItIon
The ability to use mNFs beyond VNF boundaries
creates opportunities for optimizing resources
allocated to SFCs. Recall from above that there
are possibilities of consolidating multiple mNFs
and also parallelizing the execution of a subset of
mNFs in an SFC. A systematic approach is required
to develop algorithms for resource allocation for
mNFs that take the aforementioned possibilities
into account while meeting QoS requirements
(e.g., throughput). Other possibilities to consider
include reordering the mNFs without changing the
SFC semantics to improve existing placements

or make new ones feasible, which were not pos-
sible with monolithic VNFs. Also, algorithms for
dynamically scaling microservices to meet chang-
es in traffic demand also need attention from the
research community.

MIcrosErvIcE pErforMAncE profIlIng
A key to efficient resource allocation and VNF
management is to have accurate resource usage
and performance profiles of the mNFs. The per-
formance profile of mNFs will contain resources
required (e.g., CPU share) to achieve certain QoS
parameters (e.g., packets processed per second)
under a given workload. Such profiles help the
orchestration system to optimize mNF placement
and the operators to reason about the perceived
performance. This non-trivial task requires devel-
oping workloads that represent realistic scenari-
os and instrumentation mechanisms to measure
different performance parameters under various
loads.

ovErhEAd vs. flExIbIlIty
From an architectural perspective, microservices
are an attractive choice for re-designing network
functions. However, from a practical standpoint
such redesign can also add overhead to pack-
et processing (e.g., increased processing laten-
cy due to long paths in a mNF processing graph).
A systematic study is required to understand the
trade-offs between the observed overhead and
the achieved flexibility. Such a study will help to
identify the use cases where microservice-based
NFs are more beneficial.

lAnguAgE for vnf And sfc coMposItIon
A fundamental requirement in a microser-
vice-based NFV platform is a language that can
capture the hierarchical nature of SFC compo-
sition, that is, how VNFs are composed using
mNFs (a VNF template) and subsequently how
SFCs will be composed from VNFs (SFC speci-
fication). When a network operator defines an
SFC by describing the VNFs and their intercon-
nections, the first step for the orchestrator is to
translate the SFC or a set of SFCs to a mNF pro-
cessing graph by leveraging a set of predefined
VNF templates. This translation acts as a basis for
further optimizing the mNF graph for resource
allocation. Available orchestration languages such
as TOSCA (https://docs.oasis-open.org/tosca/
tosca-nfv/v1.0/tosca-nfv-v1.0.html) and HOT
(http://docs.openstack.org/developer/heat/tem-
plate_guide/hot_guide.html) can be evaluated for
possible adoption or new languages need to be
developed.

fAult tolErAncE And rEcovEry
In general, fault tolerance has been a key con-
cern for microservice-based software. Re-usability,
a key feature of microservices, is also responsi-
ble for causing cascading failures. However, the
situation becomes even more critical for tele-
communication network operators who typical-
ly require higher reliability (five nines or more)
compared to cloud service providers (four nines).
A major challenge in realizing microservice-based
NFV platforms is to ensure strong consistency of
mNF states while recovering from failures with-
in an order of milliseconds. And all this needs to

From an architectural perspective, microservices are an attractive choice for re-designing network
functions. However, from a practical standpoint such redesign can also add overhead to packet
processing. A systematic study is required to understand the trade-offs between the observed

overhead and the achieved flexibility.

IEEE Network • May/June 2019 175

be achieved with an overhead budget of a few
microseconds per packet.

stAtElEss vs. stAtEful MIcrosErvIcE dEsIgn
A design choice in building microservice-based
VNFs is to determine the placement of states
(e.g., address translation table). One approach
is to keep the states with the microservices for
easier maintenance. However, this makes scal-
ing difficult due to state synchronization. Anoth-
er approach is to maintain the VNF-specific state
external to the microservices and have a sepa-
rate logic for handling it (e.g., similar to [14]).
This decouples the microservices from stateful
network processing and facilitates easier scaling.
However, this can add to the packet processing
latency due to remote state access. Therefore, the
challenge lies in striking a balance between ease
of scaling and maintenance overhead in such a
platform.

vIrtuAlIzAtIon plAtforMs
Virtualization provides isolation between coexisting
applications. However, the level of virtualization
has an impact on the level of isolation and the per-
formance overhead. A popular choice for deploy-
ing microservices in the cloud is containers (e.g.,
Docker). However, studies show severe perfor-
mance degradation in packet processing through-
put even when using containers [11]. Ideally, the
virtualization platform should have minimal perfor-
mance impact compared to bare-metal and should
be able to spawn mNFs within milliseconds to sup-
port on-demand service provisioning. This man-
dates the need for new virtualization platforms to
support mNFs. One research direction is to explore
unikernel operating systems [15] to create a light-
weight virtualization platform for mNFs.

undErlyIng coMputEr ArchItEcturEs
Appropriate computer architectures to support
mNF-based VNFs is an important consideration.
State-of-the-art multi-core processors have tens
of processing cores, reaching up to hundreds
with multiple CPU sockets. However, inter-core
communication and synchronization is considered
expensive, let alone its inter-socket counterpart. A
possible area of exploration is to use processors
with hundreds of small and power-efficient cores
to allow many microservices to be co-located on
a single machine. In this regard, rack-scale com-
puting architectures, that is, servers with a large
number of tightly integrated systems-on-a-chip, is
a possible candidate for exploration.

MonItorIng
Monitoring is an integral part of any network
management system. A key challenge in micro-
service-based NFV platforms will be to derive
end-to-end metrics (e.g., end-to-end latency) from
mNF-specific monitoring data (e.g., per pack-
et latency). The challenges come from the fact
that packets can take different paths in the mNF
processing graph. Therefore, tracing the end-to-
end packet life-cycle will require understanding
the interaction between microservices. This will
require developing the necessary infrastructure to
ingest mNF–mNF interaction and mNF-specific met-
rics, and to analyze the data to obtain end-to-end
performance metrics. Another design consider-

ation is to equip the microservices with necessary
monitoring hooks (e.g., counters, filters and so
on) in the first place to facilitate the derivation of
end-to-end performance metrics.

dEbuggIng And vErIfIcAtIon
Debugging and verification are essential tools for
both the developers and the network operators.
This has been a well-investigated research topic
for different kinds of networks. An additional chal-
lenge in mNF-based deployment will be the scale
of the problem. A mNFs-based deployment will
increase the scale of NFV deployment by at least
an order of magnitude. In addition, the debugging
and verification tools must be able to capture the
interaction between different mNFs. Capturing the
interaction between mNFs, analyzing the interac-
tion to capture the semantics of SFCs, verifica-
tion of the semantics against network policies and
identifying the root cause of errors are some inter-
esting research problems to explore.

co-ExIstEncE wIth trAdItIonAl nfv EcosystEM
The transformation from monolithic VNFs to mNF-
based ones will not happen overnight. Rather,
we envision the two ecosystems to co-exist for
some time. This poses challenges in designing the
orchestrator, for instance. In a hybrid deployment,
the orchestrator should be able to communicate
with both monolithic VNFs and mNFs. There is
also room for alternative deployment models
where each ecosystem has its own local orches-
trator, managed by a global orchestrator.

conclusIon
In this article, we motivate the adoption of the
microservice architecture for re-architecting the
NFV ecosystem. The ultimate goal is to speed up
innovation in NFV by:
• Allowing independent development of small

pieces of the ecosystem.
• Improving the utilization of underlying infra-

structure, thus positively impacting opera-
tional costs.

• Contributing to increasing the infrastructure
agility for supporting the next generation of
applications.

We also surveyed the state-of-the-art from both
industry and academia. Our survey indicates that
research in this field is still in its infancy and pro-
vides great opportunities for future contributions.
The research challenges presented in this article
can constitute a starting point for interested read-
ers in this exciting area.

AcknowlEdgMEnt
This work was supported in part by the NSERC
CREATE for Network Softwarization program.

rEfErEncEs
[1] J. Sherry et al., “Making Middleboxes Someone Else’s Prob-

lem: Network Processing as a Cloud Service,” ACM SIG-
COMM Computer Comm. Rev., vol. 42, no. 4, 2012, pp.
13–24.

Debugging and verification are essential tools for both the developers and the network operators. This
has been a well-investigated research topic for different kinds of networks. An additional challenge in

mNF-based deployment will be the scale of the problem.

IEEE Network • May/June 2019176

[2] “Network Functions Virtualisation Introductory White Paper,”
white paper, Oct. 2012, accessed: Feb 05, 2017; available:
https://portal.etsi.org/nfv/nfv white paper.pdf

[3] V. Sekar et al., “Design and Implementation of a Consolidat-
ed Middlebox Architecture,” Proc. USENIX NSDI ’12. USENIX
Association, 2012, pp. 24–24.

[4] R. Roseboro, “Cloud-Native NFV Architecture for Agile Ser-
vice Creation & Scaling,” white paper, Jan. 2016.

[5] “NIST Definition of Microservices, Application Containers
and System Virtual Machines,” draft, Feb. 2016, accessed:
Feb. 05, 2017; available: http://csrc.nist.gov/publications/
drafts/800- 180/sp800-180 draft.pdf.

[6] “Network Functions Virtualisation (NFV); Virtual Net-
work Functions Architecture,” white paper, Dec. 2014,
accessed: Feb 05, 2017; available: http://www.etsi.org/
deliver/etsi gs/NFVSWA/ 001 099/001/01.01.01 60/gsN-
FV-SWA001v010101p.pdf.

[7] R. Morris et al., “The Click Modular Router,” Proc. ACM
SOSP ’99, ACM, 1999, pp. 217–31.

[8] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A Soft-
ware-Defined Framework for Developing, Deploying, and
Managing Network Functions,” Proc. ACM SIGCOMM ’16,
ACM, 2016, pp. 511–24.

[9] G. Liu et al., “Microboxes: High Performance NFV with Cus-
tomizable, Asynchronous TCP Stacks and Dynamic Sub-
scriptions,” Proc. ACM SIGCOMM 2018, ACM, 2018, pp.
504–17.

[10] W. Zhang et al., “Flurries: Countless Fine-Grained NFS for
Flexible Per-Flow Customization,” Proc. ACM CoNEXT ’16,
ACM, 2016, pp. 3–17.

[11] A. Panda et al., “Netbricks: Taking the V Out of NFV,” Proc.
USENIX OSDI ’16, USENIX, 2016.

[12] N. Dragoni et al., “Microservices: Yesterday, Today, and
Tomorrow,” Present and Ulterior Software Engineering,
Springer, 2017, pp. 195–216.

[13] R. Mijumb et al., “Network Function Virtualization: State-of-
the-Art and Research Challenges,” IEEE Commun. Surveys &
Tutorials, vol. 18, no. 1, 2016, pp. 236–62.

[14] M. Kablan et al., “Stateless Network Functions: Breaking the
Tight Coupling of State and Processing,” Proc. USENIX NSDI,
2017, pp. 97–112.

[15] A. Madhavapeddy et al., “Unikernels: Library Operating
Systems for the Cloud,” ACM SIGPLAN Notices, vol. 48, no.
4. ACM, 2013, pp. 461–72.

bIogrAphIEs
Shihabur rahman Chowdhury is a Ph.D. student at the David
R. Cheriton School of Computer Science, University of Water-
loo. He received his B.Sc. degree in computer science and
engineering from Bangladesh University of Engineering and
Technology (BUET). His research interests include virtualization
and softwarization of computer networks. He has received sev-
eral scholarships and awards including co-recipient of the Best
Paper award at IEEE/ACM/IFIP CNSM 2017.

mohammad a. Salahuddin is a postdoctoral fellow at the
David R. Cheriton School of Computer Science, University of
Waterloo. He received his Ph.D. in computer science from
Western Michigan University in 2014. His current research inter-
ests include the Internet of Things, content delivery networks,
network softwarization, cloud computing, and cognitive network
management. He serves as a TPC member for international con-
ferences and is a reviewer for various journals and magazines.

noura limam received her M.Sc. and Ph.D. degrees in comput-
er science from the University Pierre & Marie Curie, Paris VI, in
2002 and 2007, respectively. She is currently a research assistant
professor of computer science at the University of Waterloo. She
is on the Technical Program Committees and Organization Com-
mittees of several IEEE conferences. Her contributions are in the
area of network and service management. Her current research
interests are in network softwarization and cognitive network
management.

raouf boutaba received his M.Sc. and Ph.D. degrees in com-
puter science from the University Pierre & Marie Curie, Paris, in
1990 and 1994, respectively. He is a professor in the Cheriton
School of Computer Science and Associate Dean, Research of
the Faculty of Mathematics at the University of Waterloo, and
holds an INRIA International Chair at INRIA Nancy. His research
interests include network and service management, cloud com-
puting, network virtualization, and network softwarization.

