
Fundamenta Informaticae 129 (2014) 1–12 1

DOI 10.3233/FI-2014-860

IOS Press

Computing a Longest Common Palindromic Subsequence∗

Shihabur Rahman Chowdhury, Md. Mahbubul Hasan,
Sumaiya Iqbal, M. Sohel Rahman†‡

AℓEDA group, Department of CSE,

Bangladesh University of Engineering & Technology

Dhaka - 1000, Bangladesh

{shihab, mahbub86, sumaiya, msrahman}@cse.buet.ac.bd

Abstract. The longest common subsequence (LCS) problem is a classic and well-studied problem
in computer science. Palindrome is a word which reads the same forward as it does backward. The
longest common palindromic subsequence (LCPS) problem is a variant of the classic LCS prob-
lem which finds a longest common subsequence between two given strings such that the computed
subsequence is also a palindrome. In this paper, we study the LCPS problem and give two novel
algorithms to solve it. To the best of our knowledge, this is the first attempt to study and solve this
problem.

Keywords: longest common subsequence, palindromes, dynamic programming, range query

1. Introduction

The longest common subsequence (LCS) problem is a classic and well-studied problem in computer
science with a lot of variants arising out of different practical scenarios. In this paper, we introduce
and study the longest common palindromic subsequence (LCPS) problem. A subsequence of a string is
obtained by deleting zero or more symbols of that string. A common subsequence of two strings is a
∗Part of this research work was carried out under the research project titled “Next Generation Algorithms on Sequences” funded
by Ministry of Education, Government of the People’s Republic of Bangladesh.
†Partially supported by a Commonwealth Fellowship and an ACU Titular Fellowship
‡Address for correspondence: AℓEDA group, Department of CSE, Bangladesh University of Engineering & Technology, Dhaka
- 1000, Bangladesh

2 S.R. Chowdhyry et al. / Computing an LCPS

subsequence common to both the strings. A palindrome is a word, phrase, number, or other sequence of
units which reads the same forward as it does backward. The LCS problem for two strings is to find a
common subsequence in both the strings, having maximum possible length. In the LCPS problem, the
computed longest common subsequence, i.e., LCS, must also be a palindrome. More formally, given
a pair of strings X and Y over an alphabet Σ, the goal of the LCPS problem is to compute a Longest
Common Subsequence Z such that Z is a palindrome. In what follows, for the sake of convenience, we
will assume that X and Y have equal length, n. But our result can be easily extended to handle two
strings of different length.

String and sequence algorithms related to palindromes have attracted stringology researchers since
long [2, 6, 8, 11, 13, 14, 15, 16]. The LCPS problem can be seen as a new addition to the already rich
repertoire of problems related to palindromes. To the best of our knowledge, there exists no publication
in the literature on computing longest common palindromic subsequences. However, the problem of
computing palindromes and variants in a single sequence has received much attention in the literature.
Manacher discovered an on-line sequential algorithm that finds all initial1 palindromes in a string [13].
Gusfield gave a linear-time algorithm to find all maximal palindromes in a string [7]. Porto and Barbosa
gave an algorithm to find all approximate palindromes in a string [16]. Authors in [15] solved the
problem of finding all palindromes in SLP (Straight Line Programs)-compressed strings. Additionally,
a number of problems on variants of palindromes have also been investigated in the literature [8, 3, 11].
Very recently, I et al. worked on pattern matching problems involving palindromes [9].

Apart from being interesting from a pure theoretical point of view, the LCPS problem may turn out
to be useful in computational biology as well. Biologists believe that palindromes play an important role
in regulation of gene activity and other cell processes because these are often observed near promoters,
introns and specific untranslated regions. Identifying palindromes could help in advancing the under-
standing of genomic instability [4], [12], [17]. Finding common palindromes in two gene sequences can
be an important criterion to compare them, and also to find common relationships between them.

The rest of the paper is organized as follows. In Section 2 we give some definitions and introduce
the notations used in the rest of the paper. We present a O(n4) time Dynamic Programming algorithm
to solve the LCPS problem in Section 3. In Section 4, we map the LCPS problem to a problem from
computational geometry and present a O(R2 log2 n log log n) time algorithm to solve it. Finally, we
conclude with some future directions of our work in Section 5.

2. Preliminaries

We assume a finite alphabet, Σ. Given a string X = x1x2 . . . xn, Xi,j = xi . . . xj (1 ≤ i ≤ j ≤ n)
is a substring of X . A palindrome is a string which reads the same forward as it does backward. More
formally, we say a string Z = z1z2 . . . zu is a palindrome if and only if zi = zu−i+1 for any 1 ≤ i ≤

⌈
u
2

⌉
.

A subsequence of a string X is a sequence obtained by deleting zero or more characters from X . A
subsequence Z of X is a palindromic subsequence if Z is a palindrome. For two strings X and Y , if
a common subsequence Z of X and Y is a palindrome, then Z is said to be a common palindromic
subsequence (CPS). A CPS of two strings X and Y , having the maximum length is called a Longest
Common Palindromic Subsequence (LCPS) and we denote it by LCPS(X,Y).

1A string X[1 . . . n] is said to have an initial palindrome of length k if the prefix S[1 . . . k] is a palindrome.

S.R. Chowdhyry et al. / Computing an LCPS 3

For two strings X = x1x2 . . . xn and Y = y1y2 . . . yn we define a match to be an ordered pair
(i, j) such that xi = yj . The set of all matches between two strings X and Y is denoted by M and it
is defined as, M = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n and xi = yj}, and |M| = R. We define, Mσ

as a subset of M such that all matches within this set are due to a single character σ ∈ Σ. That is,
Mσ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n and xi = yj = σ ∈ Σ}, and |Mσ| = Rσ. Clearly,Mσ ⊆ M
andM =

∪
σ∈Σ
Mσ. Each member ofMσ is called a σ-match.

3. A Dynamic Programming Algorithm

A brute-force approach to this problem would be to enumerate all the subsequences of X and Y and
compare them, keeping track of the longest palindromic subsequence found. There are 2n subsequences
of any string of length n. So the brute force approach would lead to an exponential time algorithm. In
this section, we will devise a dynamic programming algorithm for the LCPS problem. Here, we will
see that the natural classes of subproblems for LCPS correspond to pairs of substrings of the two input
sequences. We first present the following theorem which proves the optimal substructure property of the
LCPS problem.

Theorem 3.1. Let X and Y be two strings of length n and Xi,j = xixi+1 . . . xj−1xj and Yk,ℓ =
ykyk+1 . . . yℓ−1yℓ are two substrings of them respectively. Let Z = z1z2 . . . zu be the LCPS of the
two substrings, Xi,j and Yk,ℓ. Then, the following statements hold,

1. If xi = xj = yk = yℓ = a (a ∈ Σ), then z1 = zu = a and z2 . . . zu−1 is an LCPS of Xi+1,j−1 and
Yk+1,ℓ−1.

2. If xi = xj = yk = yℓ condition does not hold then, Z is an LCPS of (Xi+1,j and Yk,ℓ) or (Xi,j−1

and Yk,ℓ) or (Xi,j and Yk,ℓ−1) or (Xi,j and Yk+1,ℓ).

Proof:
(1) By definition Z is a palindrome. Hence, we have z1 = zu. If z1 = zu ̸= a then we can append a
at both ends of Z to obtain a common palindromic subsequence of Xi,j and Yk,ℓ of length u+ 2, which
contradicts the assumption that Z is an LCPS of Xi,j and Yk,ℓ. So we must have z1 = zu = a. Now,
the substring z2 . . . zu−1 with length u− 2 itself is a palindrome and it is common to both Xi+1,j−1 and
Yk+1,ℓ−1. We need to show that it is an LCPS. For the purpose of contradiction let us assume that there is
a common palindromic subsequence W of Xi+1,j−1 and Yk+1,ℓ−1 with length greater than u− 2. Then
appending a to both ends of W will produce a common subsequence of Xi,j and Yk,ℓ with length greater
than u, which is a contradiction.

(2) Since Z is a palindrome, z1 = zu. Since the condition xi = xj = yk = yℓ does not hold, so z1
and z2 is not equal to at least one of xi, xj , yk and yℓ. Therefore Z is a common palindromic subsequence
of the substrings obtained by deleting at least one character from either end of Xi,j or Yk,ℓ. If any pair of
substrings obtained by deleting one character from either end of Xi,j or Yk,ℓ has a common palindromic
subsequence W with length greater than u then it would also be a common palindromic subsequence of
Xi,j and Yk,ℓ, contradicting the assumption that Z is a LCPS of Xi,j and Yk,ℓ.

This completes the proof. ⊓⊔

4 S.R. Chowdhyry et al. / Computing an LCPS

From Theorem 3.1, we see that if xi = xj = yk = yℓ = a (a ∈ Σ), we must find an LCPS of Xi+1,j−1

and Yk+1,ℓ−1 and append a on its both ends to yield the LCPS of Xi,j and Yk,ℓ. Otherwise, we must
solve four subproblems and take the maximum of those. These four subproblems correspond to finding
LCPS of:

(a) Xi+1,j and Yk,ℓ (b) Xi,j−1 and Yk,ℓ (c) Xi,j and Yk,ℓ−1 and (d) Xi,j and Yk+1,ℓ

Let us define lcps(i, j, k, ℓ) to be the length of the LCPS of Xi,j and Yk,ℓ. If either i > j or k > ℓ
then one of the substrings is empty and hence the length of our LCPS is 0. If both of the substrings has
length 1, then the obtained LCPS will have length 1 if the single character substrings are equal. So we
have the following two base cases,

lcps(i, j, k, ℓ) = 0 if i > j or k > ℓ (1)

lcps(i, j, k, ℓ) = 1 if (i = j and k = ℓ) and (xi = xj = yk = yℓ) (2)

Using the base cases of Equations 1 and 2 and the optimal substructure property of LCPS (Theo-
rem 3.1), we have the following recursive formula:

lcps(i, j, k, ℓ) =



0 i > j or k > ℓ

1 (i = j and k = ℓ)
and

(xi = xj = yk = yℓ)

2 + lcps(i+ 1, j − 1, k + 1, ℓ− 1) (i < j and k < ℓ) and
xi = xj = yk = yℓ

max(lcps(i+ 1, j, k, ℓ), lcps(i, j − 1, k, ℓ), (((i = j and k ≤ ℓ) or
lcps(i, j, k + 1, ℓ), lcps(i, j, k, ℓ− 1)) (k = ℓ and i ≤ j)) and

(xi = xj = yk = yℓ))
or
((i ≤ j and k ≤ ℓ) and
(xi = xj = yk = yℓ)
does not hold)

(3)

The length of an LCPS between X and Y can be obtained by evaluating lcps(1, n, 1, n). Since there
are Θ(n4) distinct subproblems, we can use dynamic programming to compute the solution in a bottom
up manner. Algorithm 1 outlines the LCPSLength procedure which takes two strings X and Y as inputs.
It stores the values of lcps(i, j, k, ℓ) in a n× n× n× n sized table named lcps. The table entries i > j
, k > ℓ have value 0 since these entries correspond to at least one empty substring. We proceed in
our computation with increasing length of the substrings. That is, table entries for substrings of length
v are computed before that for substrings of length v + 1. The procedure returns the lcps table and
lcps[1, n, 1, n] contains the length of an LCPS of X and Y . Theorem 3.2 gives us the running time of
Algorithm 1.

S.R. Chowdhyry et al. / Computing an LCPS 5

Algorithm 1 LCPSLength(X,Y)
1: n← length[X]
2: for i = 1 to n do
3: for j = 1 to n do
4: for k = 1 to n do
5: for ℓ = 1 to n do
6: if (i = j or k = ℓ) and (xi = xj = yk = yℓ) then
7: lcps[i, j, k, ℓ] = 1
8: else
9: lcps[i, j, k, ℓ] = 0

10: end if
11: end for
12: end for
13: end for
14: end for
15: for xLength = 2 to n do
16: for yLength = 2 to n do
17: for i = 1 to n− xLength+ 1 do
18: for k = 1 to n− yLength+ 1 do
19: j = i+ xLength− 1
20: ℓ = k + yLength− 1
21: if xi = xj = yk = yℓ then
22: lcps[i, j, k, ℓ] = 2 + lcps[i+ 1, j − 1, k + 1, ℓ− 1]
23: else
24: lcps[i, j, k, ℓ] = max(lcps[i+1, j, k, ℓ], lcps[i, j−1, k, ℓ], lcps[i, j, k+1, ℓ], lcps[i, j, k, ℓ−1])
25: end if
26: end for
27: end for
28: end for
29: end for
30: return lcps

Theorem 3.2. LCPSLength(X,Y) computes the length of an LCPS of X and Y in O(n4) time.

Proof:
The initialization step takes O(n4) time. As the algorithm proceeds, it computes the LCPS of substrings
of X and Y in such a way that substrings of length v is considered before substrings of length v + 1.
Now, there are O(n2) possible pairs of lengths between X and Y . For each of these pairs there are
O(n2) possible start position pairs. So the four nested loops in Lines 15 - 18 require O(n4) time. And
each table entry takes O(1) time to compute. So the table computation takes O(n4) time in total. ⊓⊔

We can use the lengths computed in lcps table returned by LCPSLength(X,Y) to construct an LCPS of X
and Y . We begin at lcps[1, n, 1, n] and trace back through the table. As soon as we find that xi = xj =
yk = yℓ, we find an element of LCPS, and recursively try to find the LCPS for Xi+1,j−1 and Yk+1,ℓ−1.
Otherwise, we find the maximum value in the lcps table for (Xi+1,j , Yk,ℓ), (Xi,j−1, Yk,ℓ), (Xi,j , Yk+1,ℓ),
(Xi,j , Yk,ℓ−1) and then use that value to compute subsequent members of LCPS recursively. Since at
least one of i, j, k, ℓ is decremented in each recursive call, this procedure takes O(n) time to construct

6 S.R. Chowdhyry et al. / Computing an LCPS

an LCPS of X and Y . If the strings are of different length (say, |X| = m, |Y | = n) then there will be
O(m2n2) pairs of substrings between X and Y . This results in a running time of O(m2n2).

4. A Second Approach

In this section, we present a second approach to efficiently solve the LCPS problem. In particular, we will
first reduce our problem to a problem from computational geometry and then solve it with the help of a
modified version of a range tree data structure. The resulting algorithm will run in O(R2 log2 n log log n)
time. Recall that, R is the number of ordered pairs at which the two strings match. First we make the
following claim.

Claim 4.1. Any common palindromic subsequence Z = z1z2 . . . zu of two strings X and Y can be
decomposed into a set of σ-match pairs (σ ∈ Σ).

Proof:
Since Z is a palindrome, we have, zi = zu−i+1 for 1 ≤ i ≤

⌈
u
2

⌉
. Since Z is common to both X and Y ,

each zi , 1 ≤ i ≤ u corresponds to a σ-match between X and Y . Therefore, zi and zu−i+1 constitute a
σ-match pair. For odd length palindromes, there exists exactly one case when we have, zi = zu−i+1 and
i = u− i+ 1. This corresponds to the substrings of X and Y having exactly a single character, and the
σ-match pair corresponds to a pair of same matches. So, zi and zu−i+1 also forms a σ-match pair in this
case. Now we can obtain σ-match pairs by pairing up each zi and zu−i+1 for all 1 ≤ i ≤

⌈
u
2

⌉
. So we

have decomposed Z into a set of σ-match pairs. ⊓⊔

It follows from Claim 4.1 that constructing a common palindromic subsequence of two strings can
be seen as constructing an appropriate set of σ-match pairs between the input strings. An arbitrary
pair of σ-matches, ⟨(i, k), (j, ℓ)⟩ (say m1), from among all pair of σ-matches between a pair of strings,
can be seen as inducing a substrings pair in the input strings. Now suppose we want to construct a
common palindromic subsequence Z with length u with m1 at the two ends of Z. Clearly we have
z1 = zu = xi = xj = yk = yℓ. Then to compute Z, we will have to recursively select σ-match pairs
between the induced substrings Xi,j and Yk,ℓ. In this way we shall get a set of σ-matches which will
correspond to the common palindromic subsequences of the input strings. If we consider all possible
σ-match pairs as the two end points of the common palindromic subsequence then the longest obtained
one among all these will be an LCPS of the input strings. This is the basic idea for constructing LCPS in
our new approach.

To computeMσ for any σ ∈ Σ, we first linearly scan X and Y to compute two arrays, Xσ and Yσ,
which contain the indexes in X and Y where σ occurs. Then we take each pair between the two arrays
to get all the ordered pairs where σ occurs in both strings.

4.1. Mapping the LCPS Problem to a Geometry Problem

Each match between the strings X and Y can be visualized as a point on a n× n rectangular grid where
all the coordinates have integer values. Then, any rectangle in the grid corresponds to a pair of substrings
of X and Y . Any σ-match pair defines two corner points of a rectangle and thus induces a rectangle
in the grid. Now, our goal is to take a pair of σ-matches as the two ends of the common palindromic

S.R. Chowdhyry et al. / Computing an LCPS 7

subsequence and recursively construct the set of pair of σ-matches from within the induced substrings.
Clearly, the rectangle induced by a pair of σ-matches will in turn contain some points (i.e matches) within
it. We recursively continue within the induced sub-rectangles to find the LCPS between the substrings
induced by the rectangles. When the recursion unfolds, we append the σ-match pair on the obtained
sequence to get the LCPS that can be obtained with our σ-match pair corresponding to the two ends.
Clearly, if we do this procedure for all such possible σ-match pairs then the longest of them will be our
desired LCPS between the two strings. The terminating condition of this recursive procedure would be:

T1. If there is no point within any rectangle. This corresponds to the case when there is no match
between the substrings.

T2. If it is not possible to take any pair of σ-matches within any rectangle. In this case we pair a match
with itself, it corresponds to the single character case in our Dynamic Programming solution.

So, in summary we do the following.

1. Identify an induced rectangle (say Ψ1) by a pair of σ-matches.

2. Pair up σ-matches within Ψ1 to obtain another rectangle and so on until we encounter either of the
two terminating conditions T1 or T2.

3. We repeat the above for all possible σ-match pairs (∀σ ∈ Σ).

4. At this point, we have a set of nested rectangle structures.

5. Here, an increase in the nesting depth of the rectangle structures as it is being constructed, corre-
sponds to adding a pair of symbols2 to the resultant palindromic subsequence. Hence, the set of
rectangles with maximum nesting depth gives us an LCPS.

Now our problem reduces to the following interesting geometric problem: Given a set of nested
rectangles defined by the σ-match pairs ∀σ ∈ Σ, we need to find the set of rectangles having the maximum
nesting depth.

In what follows, we will refer to this problem as the Maximum Depth Nesting Rectangle Structures
(MDNRS) problem.

4.2. A Solution to the MDNRS Problem

A σ-match pair, ⟨(i, k), (j, ℓ)⟩ basically represents a 2-dimensional rectangle (say Ψ). Assume, without
the loss of generality that (i, k) and (j, ℓ) correspond to the lower left corner and upper right corner
of Ψ, respectively. In what follows, depending on the context, we will sometime use ⟨(i, k), (j, ℓ)⟩
to denote the corresponding rectangle. Now, a rectangle Ψ′(⟨(i′, k′), (j′, ℓ′)⟩) will be nested within
rectangle Ψ(⟨(i, k), (j, l)⟩) if and only if the following condition holds:

i′ > i and k′ > k and j′ < j and ℓ′ < ℓ
⇔ i′ > i and k′ > k and −j′ > −j and −ℓ′ > −ℓ
⇔ (i′, k′,−j′,−ℓ′) > (i, k,−j,−ℓ).
2If condition T2 is reached, only a symbol shall be added.

8 S.R. Chowdhyry et al. / Computing an LCPS

Now we convert a 2-dimensional rectangle Ψ(⟨(i, k), (j, ℓ)⟩) to a 4-dimensional point PΨ(i, k,−j,
−ℓ). We say that a point (x, y, z, w) is chained to another point (x′, y′, z′, w′) if and only if (x, y, z, w) >
(x′, y′, z′, w′). Then, it is easy to see that, a rectangle Ψ′(⟨(i′, k′), (j′, ℓ′)⟩), is nested within a rectangle
Ψ(⟨(i, k), (j, ℓ)⟩) if and only if the point PΨ′(i′, k′,−j′,−ℓ′) is chained to the point PΨ(i, k,−j,−ℓ).
Hence, the MDNRS problem in 2-D reduces to finding the set of corresponding points in 4-dimension
having the maximum chain length. In what follows, we will refer to this problem as the Maximum Chain
Length (MCL) Problem.

To solve this problem we will use a modified form of Range Tree data structure described in [1].
A range tree can store a set of points (or values in 1-dimension), and it can be used to answer queries
like finding all the points (or values) within a given range, finding number of points (or values) in a
given range etc. For our problem, we need to perform a range maximum query. We begin with a short
description of 1-D range tree which can perform query to find out the maximum value in a given query
range and later we describe a way to generalize it into higher dimensions.

1-D range tree for an N size array is a balanced binary search tree. Root of any subtree of the tree
contains a range as a key and any value associated with that key. The range contained at the root node

is [1, n]. Each range [i, j] is then split into two halves i to
⌊
i+ j

2

⌋
(assigned to the root of left subtree

of the node containing the key [i, j]) and
⌊
i+ j

2

⌋
+ 1 to j (assigned to the right subtree of the node

containing the key [i, j]). Each half is then processed similarly and split recursively until there is only
one element left in the range. For example, for N = 4 there will be only 1 range in level 0, [1, 4]. There
will be 2 ranges in Level 1 namely, [1, 2] and [3, 4]. In Level 2, there will be 4 ranges namely, [1, 1],
[2, 2], [3, 3] and [4, 4].

We can perform update(i,x) and findmax(i,j) operations on a 1-D range tree constructed from
an array A[1 . . . n]. An update operation will update the value at the i-th position of the array to x and
also updates the corresponding range tree. The findmax(i,j) operation finds out the maximum value
from index i to j (inclusive) of the array using the range tree. Both of these operations require O(logN)
time [1].

In our problem, we require a data structure which can perform operation over a 3-D array. We want
to update a value at Position (i, j, k) of the array and we want to perform a range maximum query in
a cubic range. To be more specific, given (i, j, k) we want to perform a range maximum query in the
range [i, n]× [j, n]× [k, n], to find the maximum value at some index (i′, j′, k′) where i′ > i, and j′ > j
and k′ > k. This can be easily performed with the help of the multidimensional version of the range
tree (Multi-level Range Trees). A d-dimensional range tree can be defined as a multi-level tree using
an inductive definition on d. In the d-dimension, we shall store the point (x1, x2, . . . xd−1) in the tree,
T with respect to the xd-coordinates. For all nodes u of T , we associate a (d − 1)-dimensional multi-
level range tree with respect to (x1, x2, . . . xd−1). During update and query operations for d-dimensional
points we also perform the same operation recursively in the (d − 1)-dimensional trees. By induction
on d it can be trivially shown that any update and query operation in this tree can be done in O(logd n)
time. So in 3-D, our query and update take O(log3 n) time, where the array is of n× n× n size.

Now we present a solution to the MCL problem for 2-D. Later we shall extend this solution for
4-D. In 2-D our points will be in the form of (x, y). We maintain a 1-D range tree, T , over the range
[1 . . . n]. The value stored at a node in the tree is the length of the longest chain that can be formed
starting from any point with the x coordinate that falls within the node’s range. Initially, all the values in

S.R. Chowdhyry et al. / Computing an LCPS 9

T are zero. We process the points in a non-increasing order of their y coordinates and in case of a tie, in
non-decreasing order of their x coordinates. For each point (x, y), we perform a range maximum query
over the range [x, n] in T for the maximum value at index x′, where x′ > x. If the maximum value is K
then we can construct a chain of length K+1 starting from the point (x, y), and it’s immediate successor
will be a point with x′ as its abscissa. Now, we perform an update operation on the tree to update the
value at index x with corresponding value K+1. More specifically, the update operation will update the
values at nodes whose ranges contain x. Since T is balanced, any update or query operation can be done
in O(log n) time. The maximum value in T is the maximum length of the chain. If we also store at x
the point (x, y), which yields the maximum chain length then we can use that to trace the chain later in
linear time.

Now we can extend the solution of 2-D MCL Problem easily to 4-D using a 3-D range tree. We pro-
cess the points (x, y, z, w) in non-increasing order of the highest dimension w. For each point (x, y, z, w)
we perform a range query in T over the range [x, n] × [y, n] × [z, n] for maximum value at (x′, y′, z′)
where, x′ > x and y′ > y and z′ > z. The rest of the solution process is same as that of the 2-D
solution. We can update the value at (x, y, z) in a 3-D range tree and perform a range maximum query
in O(log3 n) time. Since there are as many as O(R2) points in the worst case, we can solve the LCPS
problem in O(R2 log3 n) time.

This running time can be further improved by modifying the range tree data structure. In the deepest
level of our range tree we are performing a 1-D range maximum query. But our query range always
has the form [x, n]. The 1-D range tree in the deepest level is used to answer such queries. Rahman et
al. devised a method of answering range maximum/minimum query of the form [1, x] in O(log logN)
time [10] using the Van Emde Boas (vEB) tree [5] data structure, where the values stored in the tree are
in the range [1, N]. Their update mechanism also requiredO(log logN) time to complete. The vEB tree
supports insertion and deletion operations inO(log logN) time [5]. Now, a [x, n] range query in a list is
equivalent to a [1, x] query in the list’s reversal. Therefore, a [x, n] query on a list can be performed using
the same method given in [10]. So, instead of keeping a 1-D range tree in the deepest levels, we keep a
vEB tree instead and perform the range queries in a way similar to the one described in [10]. Since our
co-ordinate values are in the range [1, n], therefore this will reduce both the query and update time in the
3-D range tree toO(log2 n log log n). Therefore, the running time to solve the LCPS problem reduces to
O(R2 log2 n log log n).

Algorithm 2 outlines the LCPS-New procedure which takes as input two strings X and Y , each of
length n and the alphabet, Σ. The following theorem gives the worst case running time of the LCPS-New
procedure.

Theorem 4.2. The LCPS-New procedure computes an LCPS of strings X and Y inO(R2 log2 n log log n)
time.

Proof:
Since there are R matches between X and Y , we have O(R2) rectangles. Therefore, there are O(R2)
points in 4-dimension. Since, R = O(n2) in the worst case, sorting the points require O(R2 logR2) =
O(R2 log n) time. Since the coordinate values are bounded within the range 1 to n, we can sort them in
linear time using the counting sort algorithm. So this will reduce the sorting time to O(R2).

Construction of a 3-D range tree with O(R2) points take O(R2 log2R2) = O(R2 log2 n) time [1].
In our case, during the construction of the 3-D range tree a total ofO(R2) insertions will be performed in

10 S.R. Chowdhyry et al. / Computing an LCPS

Algorithm 2 LCPS-New(X,Y,Σ)
1: for each σ ∈ Σ do
2: Mσ ← ϕ
3: Xσ ← ϕ
4: Y σ ← ϕ
5: for i = 1 to n do
6: if X[i] = σ then
7: Xσ ← Xσ ∪ {i}
8: end if
9: if Y [i] = σ then

10: Y σ ← Y σ ∪ {i}
11: end if
12: end for
13: for i = 1 to |Xσ| do
14: for j = 1 to |Y σ| do
15: Mσ ←Mσ ∪ {(Xσ[i], Y σ[i])}
16: end for
17: end for
18: end for
19: Rectangles← ϕ {Rectangles contains the set of all rectangles}
20: for each σ ∈ Σ do
21: for each match (i, k) ∈Mσ do
22: for each match (j, ℓ) ∈Mσ do
23: if i ≤ j and k ≤ ℓ then
24: Rectangles← Rectangles ∪ {(i, k), (j, ℓ)}
25: end if
26: end for
27: end for
28: end for
29: P ← ϕ
30: for each Ψ(i, k, j, ℓ) ∈ Rectangles do
31: P ← P ∪ {(i, k,−j,−l)}
32: end for
33: Sort the points in P in non increasing order of 4th dimension
34: Initialize the multi-level range tree T with value zero in all the nodes
35: for each point p(x, y, z, w) ∈ P do
36: Find the point (x′, y′, z′) with maximum value in T such that x′ > x and y′ > y and z′ > z.
37: K ← the value stored at (x′, y′, z′)
38: Update the value of (x, y, z) with K + 1
39: Also store (x′, y′, z′) in T at the node (x, y, z) as its successor.
40: end for
41: lcps← maximum value stored in T
42: LCPS ← trace the successors to obtain the sequence
43: return LCPS

the vEB trees at the deepest level, requiring a total of O(R2 log log n) time. Therefore, the construction
of our 3-D range tree will require O(R2 log2 n+R2 log log n) = O(R2 log2 n) time in total.

S.R. Chowdhyry et al. / Computing an LCPS 11

Each update and range query in the tree can be performed in O(log2 n log log n) time. Now, for
O(R2) points, a total of O(R2) queries are made which takes a total of O(R2 log2 n log log n) time.
Therefore, the overall running time of our algorithm is O(R2 log2 n log log n + R2 log2 n) =
O(R2 log2 n log log n). ⊓⊔

The worst case running time of our algorithm becomes O(n4 log2 n log log n), since R = O(n2).
This is clearly worse than that of the Dynamic Programming algorithm (O(n4)). But in cases where
we have R = O(n), it exhibits very good performance. In such a case the running time reduces to
O(n2 log2 n log log n). Even for R = O(n1.5), this algorithm performs better (O(n3 log2 n log log n))
than the DP algorithm.

5. Conclusion and Future Works

In this paper, we have introduced and studied the longest common palindromic subsequence (LCPS)
problem, which is a variant of the classic LCS problem. We have first presented a dynamic programming
algorithm to solve it, which runs in O(n4) time. Then, we have identified and studied some interesting
relation of the problem with a problem in computational geometry and devised anO(R2 log2 n log log n)
time algorithm. In our results, we have assumed that the two input strings are of equal length n. However,
our results can be easily extended for the case where the two input strings are of different lengths. To the
best of our knowledge this is the first attempt in the literature to solve this problem.

As a future work we are interested in working on a variant of the LCPS problem, where the gap
between two consecutive characters in the LCPS lies within some specified upper and lower bound in
at least one of the input strings. It would be also interesting to study a more restrictive form of this
problem, where the bounds on the gap is imposed for both of the input strings. Additionally, the two new
computational geometry problems (MDNRS and MCL) introduced here seem to be interesting on their
own right and could be worth further investigation.

References

[1] Bentley, J. L., Friedman, J. H.: Data Structures for Range Searching, ACM Comput. Surv., 11, December
1979, 397–409, ISSN 0360-0300.

[2] Breslauer, D., Galil, Z.: Finding all periods and initial palindromes of a string in parallel, Algorithmica, 14,
October 1995, 355 – 366.

[3] Chen, K.-Y., Hsu, P.-H., Chao, K.-M.: Identifying Approximate Palindromes in Run-Length Encoded Strings,
Proceedings of 21st International Symposium, ISAAC 2010, Jeju, Korea, December 15-17, 2010, 2010.

[4] Choi, C.: DNA palindromes found in cancer, Genome Biology, 6, 2005, ISSN 1465-6906.

[5] van Emde Boas, P.: Preserving order in a forest in less than logarithmic time, Proceedings of the 16th Annual
Symposium on Foundations of Computer Science, IEEE Computer Society, Washington, DC, USA, 1975.

[6] Galil, Z.: Real-time algorithms for string-matching and palindrome recognition, Proceedings of the eighth
annual ACM symposium on Theory of computing, 1976.

[7] Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology,
Cambridge University Press, New York, 1997.

12 S.R. Chowdhyry et al. / Computing an LCPS

[8] Hsu, P.-H., Chen, K.-Y., Chao, K.-M.: Finding All Approximate Gapped Palindromes, Proceedings of 20th
International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009., 2009.

[9] I, T., Shunsuke, I., Masayuki, T.: Palindrome Pattern Matching, Proceedings of 22nd Annual Symposium,
CPM 2011, Palermo, Italy, June 27-29, 2011., 2011.

[10] Iliopoulos, C., Rahman, M.: A New Efficient Algorithm for Computing the Longest Common Subsequence,
Theory of Computing Systems, 45, 2009, 355–371, ISSN 1432-4350.

[11] Kolpakov, R., Kucherov, G.: Searching for gapped palindromes, Theoretical Computer Science, November
2009, 5365 – 5373.

[12] Lange, J., Skaletsky, H., van Daalen, S. K. M., Embry, S. L., Korver, C. M., Brown, L. G., Oates, R. D., Silber,
S., Repping, S., Page, D. C.: Isodicentric Y Chromosomes and Sex Disorders as Byproducts of Homologous
Recombination that Maintains Palindromes, Cell, 138, September 2009, 855–869.

[13] Manacher, G.: A new Linear-Time On-Line Algorithm for Finding the Smallest Initial Palindrome of a String,
Journal of the ACM, 22, July 1975, 346 – 351.

[14] Martnek, T., Lexa, M.: Hardware acceleration of approximate palindromes searching, Proceedings of The
International Conference on Field-Programmable Technology, 2008.

[15] Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto, K.: Efficient algorithms
to compute compressed longest common substrings and compressed palindromes, Theoretical Computer
Science, 410, March 2009, 900–913.

[16] Porto, A. H. L., Barbosa, V. C.: Finding Approximate Palindromes in Strings, Pattern Recognition, 2002.

[17] Tanaka, H., Bergstrom, D. A., Yao, M.-C., Tapscott, S. J.: Large DNA palindromes as a common form of
structural chromosome aberrations in human cancers, Human Cell, 19(1), 2006, 17–23, ISSN 1749-0774.

